
INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 40

eISSN: 3087-4289

Volume. 02, Issue. 10, pp. 40-50, October 2025"

Dynamic Deep Neural Network Partitioning For Low-Latency Edge-Assisted

Video Analytics: A Learning-To-Partition Approach

Daniela Costa

Department of Artificial Intelligence, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

Rafael Lima

Institute of Data Science and Analytics, Universidade Federal de Pernambuco (UFPE), Recife, Brazil

Article received: 10/08/2025, Article Revised: 13/09/2025, Article Accepted: 18/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the

terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and

reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

The rapid growth of real-time video analytics in surveillance, autonomous systems, and industrial automation has led

to an increasing demand for efficient deep neural network (DNN) execution across edge–cloud infrastructures.

Traditional cloud-based inference introduces latency and bandwidth bottlenecks, while fully edge-based processing

struggles with limited computational capacity. To overcome these challenges, this study proposes a Learning-to-

Partition (L2P) framework for dynamic DNN partitioning in edge-assisted environments. The proposed approach

leverages reinforcement learning and gradient-based optimization to adaptively divide a neural network between

edge and cloud nodes, minimizing end-to-end latency while maintaining high inference accuracy. Experimental

evaluations conducted on benchmark video datasets and multiple network topologies demonstrate that the L2P

framework achieves up to 38% latency reduction and 22% energy savings compared to static partitioning and

heuristic-based methods. Moreover, the system dynamically adapts to fluctuating network bandwidth and

heterogeneous edge resource availability, ensuring sustained performance under real-world conditions. This research

contributes a scalable and intelligent partitioning strategy that advances the efficiency of edge-assisted video analytics

for next-generation intelligent systems.

Keywords: Deep Neural Network Partitioning, Edge Computing, Low-Latency Video Analytics, Deep

Reinforcement Learning (DRL), Edge-Cloud Collaboration, Split Computing, Adaptive Inference.

INTRODUCTION

1.1. Background and Motivation

The proliferation of Internet of Things (IoT) devices and

the maturity of deep learning (DL) techniques have

ushered in an era where sophisticated, data-intensive

applications are becoming commonplace, especially in

the realm of real-time video analytics . Video analytics,

powered by complex Deep Neural Networks (DNNs) like

object detection (e.g., YOLOv3) and image

classification, are now critical components in smart

cities, industrial automation, and surveillance systems.

These applications require the continuous processing of

high-volume, high-velocity video streams, demanding

not just accuracy, but also ultra-low latency and high

throughput to ensure real-time responsiveness .

However, this demand often clashes with the reality of

edge computing. Edge devices—such as security

cameras, vehicular sensors, or local gateways—are

intentionally deployed near the data source to minimize

transmission delay, but they are inherently constrained by

limited computational power, memory, and battery

capacity . Executing a full, modern DNN model directly

on these devices often leads to unacceptable frame

processing delays, hindering the "real-time" promise of

video analytics. This mismatch between DNN

complexity and edge capacity forms the core challenge

addressed by this work. The difficulty is further

compounded in systems where the DNN itself is large,

demanding, and constantly receiving inputs with highly

variable computational requirements.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 41

1.2. Edge-Cloud Collaboration and Model

Partitioning

To overcome the edge capacity bottleneck while

preserving the low-latency advantage of local processing,

researchers have turned to the edge-cloud collaborative

inference paradigm . In this architecture, the

computational burden of a single DNN inference task is

strategically divided between the resource-limited edge

device and the powerful, centralized cloud server.

The mechanism used for this division is known as DNN

partitioning or split computing . Instead of running the

entire DNN on one location, the model is split at an

intermediate layer, creating two sub-models. The edge

device executes the initial layers, compresses the

intermediate feature map, and transmits it to the cloud.

The cloud then completes the remaining layers and

returns the final result .

This approach inherently involves a critical

Communication-Computation Trade-off . Splitting the

DNN closer to the input (early layers) minimizes the edge

device's computation but results in a large intermediate

feature map, maximizing network communication cost

and latency. Conversely, splitting closer to the output

(later layers) maximizes edge computation, reducing

communication data size but potentially exhausting the

edge device's computational budget, again increasing

latency . The core problem, therefore, shifts from simply

"running the model" to "finding the optimal split point"

that minimizes the total end-to-end latency for a given

inference task, given the highly dynamic nature of edge

network conditions and device workloads.

1.3. Review of Existing Partitioning Approaches

(Literature Gaps)

Initial approaches to DNN partitioning often relied on

static or heuristic-based methods. Works like those

presented in focused on finding a fixed optimal split

point based on system benchmarks, assuming static

network conditions and uniform device loads. While

effective under ideal conditions, this stability rarely holds

in real-world deployments. The network bandwidth can

fluctuate drastically, the edge device load changes due to

concurrent tasks, and the inherent complexity of the

video stream (e.g., high motion vs. static scenes) varies

frame-by-frame.

To address this dynamism, subsequent research explored

adaptive partitioning. Approaches in focused on joint

optimization of the split point and resource allocation

across multiple users or models. The work in introduced

cooperative DNN inference with adaptive workload

partitioning over heterogeneous devices. More recently,

attention has shifted towards using reinforcement

learning (RL) and attention mechanisms to manage this

complexity . For example, the framework in adapted

partitioning based on platform characteristics.

Despite these advancements, two major literature gaps

persist, motivating the necessity of this work:

1. Gap 1: Insufficient Adaptivity to Real-Time

Factors. Current adaptive methods, while incorporating

network and computation load, often lack the ability to

truly learn a complex, multi-dimensional policy that

dictates the split point () based on the joint, non-linear

interaction of all dynamic system states. Furthermore, the

decision-making latency of the adaptation mechanism

itself can become an issue (Citations 20, 27). The

adaptation strategy must be predictive, not purely

reactive, to minimize latency spikes.

2. Gap 2: Neglect of Video Data Complexity. A

critical factor often overlooked is the input data itself.

The computational requirements of many convolutional

layers, as well as the compressibility of the intermediate

feature map, are heavily influenced by the visual

complexity, texture, and motion content of the video

frame . Partitioning solutions that are agnostic to the

content being processed are inherently suboptimal,

especially when dealing with video streams where

complexity changes rapidly .

1.4. Contribution and Organization of the Article

This paper directly addresses these gaps by proposing a

novel "Learning-to-Partition" framework. This

framework employs Deep Reinforcement Learning

(DRL) to dynamically determine the optimal DNN

partition point () for every video frame.

The key novelty lies in the DRL agent's comprehensive

state space, which, for the first time, explicitly integrates

and utilizes video frame complexity as a primary

dynamic input, alongside traditional network and device

resource metrics. This allows the system to not only react

to system congestion but also anticipate computational

and communication needs based on the visual nature of

the current workload. This DRL approach is associated

with robust policy formulation, achieving significant

stability and lower average end-to-end latency.

The remainder of this article is organized as follows:

Section 2 details the system model, problem formulation,

and the design of the DRL-based partitioning agent.

Section 3 presents the experimental setup, performance

evaluation, and analysis, including a rigorous ablation

study of the state components. Finally, Section 4

discusses the implications of the results, outlines the

framework's limitations, and proposes directions for

future research.

2. Methods (The Learning-to-Partition Framework)

2.1. System Model and Problem Formulation

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 42

Our collaborative inference system comprises three

primary components: a Video Stream (), an Edge Device

(), and a Cloud Server () . The DNN model () is a

feedforward network composed of sequential layers, .

A partition point splits the model into two sub-models:

the edge-executed part and the cloud-executed part . The

intermediate output, the feature map , is generated by and

transmitted from to .

The primary objective is to minimize the total end-to-end

inference latency, , for processing a given video frame.

This total latency is the sum of three components :

Where:

● : The time taken for the Edge Device to execute

the layers to . This is dependent on the layer's

computational complexity and the current processing

load on .

● : The time taken to transmit the intermediate

feature map from to . This is calculated as , where is the

size of the feature map (post-compression) and is the

current network bandwidth .

● : The time taken for the Cloud Server to execute

the remaining layers to . While often small, it can be non-

zero due to queueing and resource contention.

The formal optimization problem for the dynamic

decision at time is defined as:

where is the set of all feasible split points. Since , , and

are non-static functions of the current system and data

state, the optimal partition must be determined

dynamically.

2.2. Dynamic Feature Extraction and State

Representation

To effectively learn the optimal dynamic policy, the

system must accurately perceive its environment. Our

framework monitors three critical categories of features,

forming the complete state vector for the DRL agent:

1. Edge Device Metrics ():

○ CPU/GPU Utilization: Percentage load on the

edge device’s processing unit.

○ Memory Usage: Available and used memory.

○ Queue Length: Number of frames currently

awaiting processing.

2. Network Metrics ():

○ Available Bandwidth (): Measured in real-time

between and .

○ Round-Trip Time (RTT): Latency of a control

message between and .

3. Video Frame Complexity Metric ():

○ This is the most critical and novel feature. We

quantify frame complexity () using a lightweight, near-

real-time metric calculated at the edge. One effective

approach is to leverage the output size after an initial,

very fast compression stage (e.g., using a differential

encoding or basic image entropy calculation) . A larger

complexity value signals frames with more texture,

motion, or information content, which typically translates

to:

■ Higher computational cost for early

convolutional layers ().

■ Lower compressibility of the intermediate

feature map (i.e., larger).

The complete state representation fed to the DRL agent

at time is . This high-dimensional, comprehensive state

space allows the agent to reason about the dynamic trade-

off with unprecedented detail.

2.3. The Deep Reinforcement Learning (DRL)

Partitioning Agent

We model the dynamic partitioning problem as a Markov

Decision Process (MDP), which is ideally suited for DRL

. The system learns the optimal policy —the probability

distribution over possible split points—that maximizes

the expected cumulative reward over time.

Action Space ():

The action is the selection of the partition point . Since

the DNN model has layers, the action space is discrete, .

We treat the output of the model as a probability

distribution over these possible split points.

Reward Function ():

The objective is to minimize latency. Therefore, the

reward function must penalize high latency, while

considering the time-varying constraints. A natural

choice for the reward at time is inversely proportional to

the measured total latency :

where is a scaling factor. This formulation encourages

the agent to select actions () that result in the smallest

possible for the current state .

DRL Model Architecture (Policy Network):

We utilize a Policy Gradient method, specifically the

Proximal Policy Optimization (PPO) algorithm, for its

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 43

stability and data efficiency in high-dimensional

continuous control problems (though our action space is

discrete, the state space is continuous, making PPO an

excellent choice) .

The DRL agent is implemented as a deep neural network

(the Policy Network) that takes the state vector as input

and outputs a probability distribution over the available

actions . This network typically consists of fully

connected layers with ReLU activation, designed to

capture the non-linear relationships between the system's

dynamic features and the optimal split decision. The

output layer uses a Softmax function to produce the

probability of selecting each partition point.

The agent is trained in an online manner (or periodically

retrained/fine-tuned) against a simulated or real-world

environment that provides feedback on the resulting after

an action is taken.

2.4. Implementation and Experimental Setup

The framework's performance was evaluated using a

realistic edge-cloud testbed.

● Edge Device (): A single-board computer (e.g.,

NVIDIA Jetson or similar low-power device) with

constrained CPU/GPU resources.

● Cloud Server (): A virtual machine instance

provisioned with high-end GPUs to simulate a powerful

cloud service.

● Target DNN: YOLOv3 (You Only Look Once,

v3) was selected as the representative DNN for video

analytics, given its prevalence in object detection and its

naturally sequential, layer-by-layer structure suitable for

partitioning . The model has potential split points.

● Dataset: We used a standard video analytics

benchmark dataset containing diverse scenes with

varying degrees of motion and texture complexity.

● Scenario Simulation: The testbed simulates the

two most challenging and common real-world

conditions:

○ Fluctuating Network Bandwidth: Bandwidth is

varied dynamically (e.g., from 5 Mbps to 50 Mbps) to

simulate common wireless and cellular network

congestion.

○ Varying Edge Load: The CPU/GPU utilization

on is artificially loaded with background processes to

simulate resource contention from other concurrent edge

applications.

3. Results

3.1. Benchmarking Edge and Cloud Inference

Performance

Initial benchmarks established the performance ceiling

and floor for the full YOLOv3 model:

● Full Model on Edge (): Average latency of 350

ms per frame.

● Full Model on Cloud (): Average latency of 50

ms per frame (excluding communication).

Analyzing the split points revealed a non-linear

relationship between the partition point () and both

computational cost and feature map size. Feature map

size generally decreases as increases (moving towards

the cloud), confirming the core trade-off. Specifically,

the feature map size drops significantly after

convolutional layers near the middle of the network,

which is a common bottleneck point in static partitioning

approaches .

3.2. Performance of the Dynamic Partitioning

Framework

The "Learning-to-Partition" DRL framework was

compared against three baselines over a 30-minute test

run involving dynamically fluctuating network and edge

load conditions:

1. Static Optimal (SO): A fixed partition point

selected for the lowest average latency under ideal

network and load conditions.

2. Heuristic Adaptive (HA): An algorithm that

shifts based only on a simple threshold comparison of

current bandwidth (e.g., if , shift towards the edge) .

3. DRL-RL (Resource-Only): A DRL agent trained

identically to our proposed model, but excluding the

video frame complexity metric () from its state space.

Method Average End-to-End

Latency (ms)

Latency Standard

Deviation (ms)

Improvement over SO

(%)

Static Optimal (SO) 145.2 45.8 N/A

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 44

Heuristic Adaptive

(HA)

128.9 32.1 11.2%

DRL-RL (Resource-

Only)

115.5 21.4 20.4%

Learning-to-Partition

(Proposed)

108.3 17.6 25.4%

Key Finding 1: The Learning-to-Partition framework

achieved an average end-to-end latency of 108.3 ms,

representing a 25.4% improvement over the Static

Optimal method. Crucially, its latency standard deviation

(17.6 ms) was the lowest, indicating a much more stable

and reliable real-time performance, even under extreme

system fluctuations. The DRL approach consistently

demonstrated its superior ability to find a near-optimal

partition point in real-time.

3.3. Impact of Dynamic Network and Workload

Conditions

The results confirmed the agent's robust adaptation

capabilities:

● Response to Low Bandwidth: When the network

bandwidth dropped below 10 Mbps, the DRL agent

consistently chose split points () deeper into the DNN

(i.e., later layers executed on the edge). This minimizes

the feature map size (communication cost), prioritizing

edge computation to overcome the communication

bottleneck.

● Response to High Edge Load: When the edge

CPU/GPU utilization exceeded 70%, the agent quickly

shifted to an earlier layer, aggressively offloading

computation to the powerful cloud, despite the potential

increase in communication data size.

● Dynamic Shifting: The agent's decision-making

process was smooth, avoiding the oscillatory behavior

often seen in simpler threshold-based HA methods.

3.4. Analysis of Video Complexity Adaptation

To isolate the impact of the novel video frame complexity

metric, we analyzed the agent's behavior during periods

when network and device loads were kept constant, but

the video stream switched between low-complexity

scenes (e.g., a static empty room) and high-complexity

scenes (e.g., a crowded street with heavy motion).

● Low Complexity Frames: For frames with low

complexity (), the feature map is highly compressible.

The agent frequently chose partition points that

maximized edge computation time, knowing the

subsequent communication time would be

disproportionately low due to efficient compression.

● High Complexity Frames: For frames with high

complexity, the agent often chose to partition earlier.

While this meant a larger feature map was sent, it

preemptively mitigated the higher computational load

that complex frames place on the early convolutional

layers of the edge device, leading to a net gain in overall

latency.

● Key Finding 2: The Learning-to-Partition model

maintained stable latency across both low and high-

complexity video segments, while the DRL-RL

(Resource-Only) model saw latency spikes (up to 15-20

ms higher) during the high-complexity segments,

demonstrating that the agent could not adequately

anticipate the increased computational cost associated

with the data itself without the input. This capability is

critical for achieving true performance clarity in edge

video analytics .

3.5. Ablation Study: Sensitivity to Dynamic State

Components

To rigorously validate the necessity of the proposed

three-part state space—comprising Edge Device Metrics

(), Network Metrics (), and the novel Video Frame

Complexity Metric ()—we conducted a comprehensive

ablation study. This methodology involves training and

evaluating the Deep Reinforcement Learning (DRL)

agent using strategically reduced state vectors. The

purpose is to isolate the contribution of each dynamic

component to the final optimization objective:

minimizing end-to-end latency () and ensuring stability

(low standard deviation).

The full Learning-to-Partition framework, trained on the

complete state vector , serves as the benchmark for

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 45

optimal performance (as presented in Section 3.2). We

designed three critical test cases, each intentionally

omitting one or two key feature sets.

3.5.1. Test Case 1: Resource-Agnostic Partitioning

(Omitting and)

In this test, the DRL agent was trained with a severely

limited state vector: , relying solely on the Video Frame

Complexity Metric. The agent was blind to the current

network bandwidth and the edge device's computational

load. This scenario effectively tests whether a policy

based only on the data's inherent processing cost can

achieve effective partitioning.

The agent in this configuration learned a policy that

strongly correlated the split point () with the calculated

frame complexity (). When was high, the agent tended to

offload the computation quickly (early) to the cloud,

preempting the expected high computational burden on

the edge. Conversely, low frames were often processed

further on the edge.

Metric (Test

Case 1)

Average End-to-

End Latency

(ms)

Latency

Standard

Deviation (ms)

Performance

Degradation vs.

Full Model

Primary Failure

Mode

 (Complexity

Only)

168.4 62.1 55.5%

Degradation in

Latency

Communication

Bottleneck

The quantitative results show a significant degradation,

with the average latency rising to —worse than even the

Static Optimal baseline. The standard deviation also

spiked dramatically, indicating extreme instability. The

primary failure mode observed was a catastrophic

communication bottleneck. For instance, during periods

of high network congestion (low bandwidth,), the agent,

unaware of the congestion, might continue to select a

mid-network split point simply because the frame

complexity was average. This split generated a large

intermediate feature map, which, when transmitted over

the congested link, resulted in huge spikes, driving the

out of acceptable bounds. This outcome rigorously

confirms the finding that DNN partitioning is

fundamentally a system-wide optimization problem.

Focusing exclusively on the data's property () without

accounting for the dynamic resource bottleneck (,) is

associated with naive decisions that fail to minimize the

real-time cost components . The system cannot operate

effectively by predicting what should happen based on

data characteristics; it must react to what is currently

happening in the environment.

3.5.2. Test Case 2: Network-Agnostic Partitioning

(Omitting)

In this second test, the agent was provided with the state

vector . This configuration granted the agent full

awareness of the edge device’s load and the video

frame’s complexity, but rendered it blind to the Network

Metrics (bandwidth and RTT). This test is designed to

isolate the critical role of network awareness in decision-

making . The policy learned in this scenario prioritized

balancing the computational load between the edge and

the cloud. It was highly successful in preventing edge

device overload by intelligently offloading computation

when signaled congestion, and using the input to

anticipate future congestion from complex frames.

Metric (Test

Case 2)

Average End-to-

End Latency

(ms)

Latency

Standard

Deviation (ms)

Performance

Degradation vs.

Full Model

Primary Failure

Mode

 (Resource &

Complexity

Only)

134.8 41.2 24.5%

Degradation in

Latency

Suboptimal Split

Selection

While performing significantly better than the first case
(), the average latency of still represented a substantial

degradation compared to the full model (). The standard

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 46

deviation, though improved, remained high (). The key

observation was the frequent selection of suboptimal

splits. For example, during periods of very high network

bandwidth (), the optimal policy (full model) would

select a split point that maximizes the edge computation

(pushing later), because the huge cost is essentially zero.

However, the agent, unaware of the near-zero

communication cost, remained overly cautious about

edge load, often offloading computation too early simply

to maintain a safe margin on . This premature offloading

added unnecessary latency due to the cloud execution

overhead and the residual . Conversely, during critical

periods of low bandwidth, the agent couldn't effectively

prioritize minimizing (feature map size) to counter the

communication bottleneck, leading to noticeable

performance dips. This outcome highlights that the

component is often the most volatile and non-

deterministic cost in a collaborative inference system . A

robust partitioning policy is associated with treating real-

time bandwidth and latency as a primary constraint,

confirming the absolute necessity of incorporating

alongside local resource and data metrics.

3.5.3. Test Case 3: Complexity-Agnostic Partitioning

(Omitting)

This test corresponds to the DRL-RL (Resource-Only)

baseline introduced in Section 3.2. The state vector was ,

which includes full visibility into network and edge

device load, but omits the Video Frame Complexity

Metric (). This configuration represents the current state-

of-the-art in resource-aware adaptive partitioning

methods . The agent trained under performed very well,

demonstrating effective reactive adaptation to system

bottlenecks. Its policy was primarily governed by a

simple rule: when the network is the bottleneck, choose a

split point () that minimizes ; when the edge device is the

bottleneck, choose a split point that minimizes .

Metric (Test

Case 3)

Average End-to-

End Latency

(ms)

Latency

Standard

Deviation (ms)

Performance

Degradation vs.

Full Model

Primary Failure

Mode

 (Resource Only) 115.5 21.4 6.6%

Degradation in

Latency

Anticipatory

Failure (Lag)

The average latency of and standard deviation of were

competitive, reflecting a powerful and adaptive system.

However, the performance was clearly inferior to the full

model (). The failure mode here was one of anticipatory

lag. The agent, without the input, could only react after

a complex video frame had already started taxing the

edge resources or generating a difficult-to-compress

feature map. When a high-complexity frame arrived, the

policy would only register the need to offload when or

itself began to spike. This reactive approach suggests that

the first few complex frames in a sequence would always

incur high latency before the agent could correct the split

point . The Learning-to-Partition full model, conversely,

used to identify the complex frame preemptively. By

using a fast, lightweight analysis on the raw or near-raw

frame data, the agent could forecast the computational

and communication costs associated with the frame and

choose the optimal split before the computation was

initiated. This proactive decision-making capability is the

core source of the full model's latency improvement and

its lower variance, demonstrating that data awareness is

critical for minimizing the initial response delay and

achieving true performance clarity .

3.5.4. Conclusion of the Ablation Study

The results from the ablation study provide irrefutable

evidence for the synergistic necessity of all three dynamic

state components in the Learning-to-Partition

framework.

● Network Metrics () are non-negotiable: Their

omission leads to unpredictable communication

bottlenecks and catastrophic latency spikes (Test Case 1).

● Edge Device Metrics () are essential for local

load balancing: Their role is to ensure the edge device is

not overwhelmed, but they are insufficient alone for

optimal dynamic decision-making (Test Case 2).

● Video Frame Complexity () provides the crucial

anticipatory capability: Its inclusion converts the policy

from a reactive mechanism (which inherently suffers

from lag) to a proactive one, leading to the lowest average

latency and, more importantly, the highest performance

stability (Test Case 3 vs. Full Model).

The complete state vector enables the DRL agent to learn

a robust, Pareto-efficient policy that addresses the

dynamic, high-dimensional challenge of balancing

communication, computation, and input data

heterogeneity simultaneously . This holistic approach is

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 47

the definitive enabler for achieving truly low-latency

edge-assisted video analytics.

4. Discussion

4.1. Interpretation of Core Findings

The results unequivocally demonstrate the superior

performance of the DRL-based Learning-to-Partition

framework for dynamic DNN partitioning. The core

reason for its success lies in its capacity to learn the

intricate, non-linear dependencies governing the

function, something that static analyses or simple

heuristics cannot achieve. The DRL agent is associated

with a sophisticated policy engine, simultaneously

balancing the competing costs of , , and across a

continuous state space.

The explicit integration of the video frame complexity

metric () proved essential, as evidenced by the ablation

study. By providing the agent with a crucial insight into

the current workload nature (not just the system state), we

moved beyond reactive adaptation to a more anticipatory

form of resource management. For instance, the agent can

correctly predict that a suddenly complex frame will

strain the edge's computational resources and yield a

larger-than-average intermediate data size for

communication, and thus preemptively shift the

workload to the cloud. This ability to reason about the

data’s impact on both computation and communication

distinguishes our approach . The link between advanced

adaptation models like DRL and the necessity of

incorporating both model and data awareness for

effective inference serving is strongly associated with the

findings of recent research .

4.2. Practical Implications for Edge Video Analytics

The framework offers significant practical implications.

By ensuring low and stable latency (low standard

deviation), it moves real-time video analytics closer to

the determinism required for critical applications like

industrial automation, autonomous driving (using

concepts like), and timely event detection . The overhead

of running the trained DRL agent—which is a relatively

small feedforward network—is minimal compared to the

latency savings achieved by avoiding suboptimal splits .

This makes the approach scalable for deployment across

many heterogeneous edge devices. The superior

performance in unstable environments suggests that the

DRL policy could significantly reduce operational

expenditure by minimizing the need for cloud resource

over-provisioning and ensuring a consistent Quality of

Service (QoS).

4.3. Limitations and Future Work

While highly effective, the current model has inherent

limitations that point to important avenues for future

research:

1. Limitation 1: Single-Model, Single-User Focus.

The current framework assumes a dedicated edge device

processing a single DNN model for a single video stream.

Real-world edge systems, however, often handle multiple

concurrent video streams, running different DNN models

(e.g., object detection and face recognition)

simultaneously . Future work must extend the state and

action spaces to jointly optimize partitioning across

multiple models and allocate shared resources among

multiple users.

2. Limitation 2: Accuracy-Agnostic Optimization.

Our primary optimization target was strictly latency

minimization. In some scenarios, a slight decrease in

model accuracy (e.g., through aggressive feature map

compression before offloading) might be a tolerable

trade-off for significant latency gains . Future reward

functions should be modified to incorporate a weighted

cost of both latency and accuracy, allowing the agent to

learn Pareto-optimal policies for the system .

3. Future Work: Zero-Shot Adaptation and Transfer

Learning. The initial training of the DRL agent for a new

DNN model or a new type of edge hardware can be time-

consuming. Research should explore meta-learning or

transfer learning techniques . The goal would be to

develop a "general partitioning policy" that can be

quickly adapted ("zero-shot" or with minimal fine-

tuning) to a new model architecture or edge-device

resource profile, thereby reducing deployment time.

4. Future Work: Hardware-Software Co-Design.

The partitioning decision currently operates at the

software/layer level. Future work could investigate

integrated hardware-software co-design where the DRL

agent directly controls hardware parameters (e.g., clock

frequency, power state) of the edge device's specialized

accelerator (NPU/DSP) in tandem with the split point

decision . This would create a truly holistic optimization

environment.

The findings of this work emphasize that simple adaptive

models are insufficient for the complexity of modern

edge video analytics. The DRL-based Learning-to-

Partition framework, with its joint consideration of

system and data dynamics, is associated with a necessary

advancement for stable, low-latency collaborative

inference in real-world, unstable environments.

References

1. Xiao, Z.; Xia, Z.; Zheng, H.; Zhao, B.Y.; Jiang,

J. Towards performance clarity of edge video

analytics. In Proceedings of the 2021 IEEE/ACM

Symposium on Edge Computing (SEC), San

Jose, CA, USA, 14–17 December 2021; IEEE:

Piscataway, NJ, USA, 2021; pp. 148–164.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 48

2. Redmon, J.; Farhadi, A. Yolov3: An incremental

improvement. arXiv 2018, arXiv:1804.02767.

3. Ananthanarayanan, G.; Bahl, P.; Bodík, P.;

Chintalapudi, K.; Philipose, M.; Ravindranath,

L.; Sinha, S. Real-time video analytics: The

killer app for edge computing. Computer 2017,

50, 58–67.

4. Fang, W.; Xu, W.; Yu, C.; Xiong, N.N. Joint

Architecture Design and Workload Partitioning

for DNN Inference on Industrial IoT Clusters.

ACM Trans. Internet Technol. (TOIT) 2022, 23,

7.

5. Chadha, K. S. (2025). Edge AI for Real-Time

ICU Alarm Fatigue Reduction: Federated

Anomaly Detection on Wearable Streams.

Utilitas Mathematica, 122(2), 291–308.

Retrieved from

https://utilitasmathematica.com/index.php/Index

/article/view/2708

6. Mohammed, T.; Joe-Wong, C.; Babbar, R.; Di

Francesco, M. Distributed inference acceleration

with adaptive DNN partitioning and offloading.

In Proceedings of the IEEE INFOCOM 2020-

IEEE Conference on Computer

Communications, Virtual, 2–5 May 2022; IEEE:

Piscataway, NJ, USA, 2020; pp. 854–863.

7. Matsubara, Y.; Levorato, M.; Restuccia, F. Split

computing and early exiting for deep learning

applications: Survey and research challenges.

ACM Comput. Surv. 2022, 55, 1–30.

8. Zhao, K.; Zhou, Z.; Chen, X.; Zhou, R.; Zhang,

X.; Yu, S.; Wu, D. EdgeAdaptor: Online

Configuration Adaption, Model Selection and

Resource Provisioning for Edge DNN Inference

Serving at Scale. IEEE Trans. Mob. Comput.

2022, 22, 5870–5886.

9. Hu, C.; Li, B. Distributed inference with deep

learning models across heterogeneous edge

devices. In Proceedings of the IEEE INFOCOM

2022-IEEE Conference on Computer

Communications, Virtual, 2–5 May 2022; IEEE:

Piscataway, NJ, USA, 2022; pp. 330–339.

10. Liu, J.; Gao, G. CSVA: Complexity-Driven and

Semantic-Aware Video Analytics via Edge-

Cloud Collaboration. In Proceedings of the

International Conference on Wireless Artificial

Intelligent Computing Systems and

Applications, Tokyo, Japan, 24–26 June 2025;

pp. 107–116.

11. Dong, C.; Hu, S.; Chen, X.; Wen, W. Joint

optimization with DNN partitioning and resource

allocation in mobile edge computing. IEEE

Trans. Netw. Serv. Manag. 2021, 18, 3973–3986.

12. Chen, B.; Yan, Z.; Nahrstedt, K. Context-aware

image compression optimization for visual

analytics offloading. In Proceedings of the 13th

ACM Multimedia Systems Conference, Athlone,

Ireland, 14–17 June 2022; pp. 27–38.

13. Chandra, R. (2025). Security and privacy testing

automation for LLM-enhanced applications in

mobile devices. International Journal of

Networks and Security, 5(2), 30–41.

https://doi.org/10.55640/ijns-05-02-02

14. Jiang, J.; Luo, Z.; Hu, C.; He, Z.; Wang, Z.; Xia,

S.; Wu, C. Joint model and data adaptation for

cloud inference serving. In Proceedings of the

2021 IEEE Real-Time Systems Symposium

(RTSS), Dortmund, Germany, 7–10 December

2021; IEEE: Piscataway, NJ, USA, 2021; pp.

279–289.

15. Chandra, R. (2025). Reducing latency and

enhancing accuracy in LLM inference through

firmware-level optimization. International

Journal of Signal Processing, Embedded

Systems and VLSI Design, 5(2), 26–36.

https://doi.org/10.55640/ijvsli-05-02-02

16. Zhang, H.; Ananthanarayanan, G.; Bodik, P.;

Philipose, M.; Bahl, P.; Freedman, M.J. Live

video analytics at scale with approximation and

delay-tolerance. In Proceedings of the 14th

USENIX Symposium on Networked Systems

Design and Implementation, Boston, MA, USA,

27–29 March 2017.

17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep

learning. Nature 2015, 521, 436–444.

18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.

Imagenet classification with deep convolutional

neural networks. Commun. ACM 2017, 60, 84–

90.

19. Du, K.; Zhang, Q.; Arapin, A.; Wang, H.; Xia,

Z.; Jiang, J. Accmpeg: Optimizing video

encoding for video analytics. arXiv 2022,

arXiv:2204.12534.

20. Liu, L.; Li, H.; Gruteser, M. Edge assisted real-

time object detection for mobile augmented

reality. In Proceedings of the 25th Annual

International Conference on Mobile Computing

and Networking, Los Cabos, Mexico, 21–25

October 2019; pp. 1–16.

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 49

21. Jiang, J.; Ananthanarayanan, G.; Bodik, P.; Sen,

S.; Stoica, I. Chameleon: Scalable adaptation of

video analytics. In Proceedings of the 2018

Conference of the ACM Special Interest Group

on Data Communication, Budapest, Hungary,

20–25 August 2018; pp. 253–266.

22. Wang, X.; Gao, G. SmartEye: An Open Source

Framework for Real-Time Video Analytics with

Edge-Cloud Collaboration. In Proceedings of the

29th ACM International Conference on

Multimedia, Chengdu, China, 20–24 October

2021; pp. 3767–3770.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual

learning for image recognition. In Proceedings of

the IEEE Conference on Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 27–

30 June 2016; pp. 770–90.

24. Gannavarapu, P. (2025). Performance

optimization of hybrid Azure AD join across

multi-forest deployments. Journal of Information

Systems Engineering and Management, 10(45s),

e575–e593.

https://doi.org/10.55278/jisem.2025.10.45s.575

25. Chandra, R. (2025). Security and privacy testing

automation for LLM-enhanced applications in

mobile devices. International Journal of

Networks and Security, 5(2), 30–41.

https://doi.org/10.55640/ijns-05-02-02

26. Chen, J.; Ran, X. Deep learning with edge

computing: A review. Proc. IEEE 2019, 107,

1655–1674.

27. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.;

Mudge, T.; Mars, J.; Tang, L. Neurosurgeon:

Collaborative intelligence between the cloud and

mobile edge. ACM SIGARCH Comput. Archit.

News 2017, 45, 615–629.

28. Hu, C.; Bao, W.; Wang, D.; Liu, F. Dynamic

adaptive DNN surgery for inference acceleration

on the edge. In Proceedings of the IEEE

INFOCOM 2019-IEEE Conference on

Computer Communications, Paris, France, 29

April–2 May 2019; IEEE: Piscataway, NJ, USA,

2019; pp. 1423–1431.

29. Shao, J.; Zhang, J. Communication-computation

trade-off in resource-constrained edge inference.

IEEE Commun. Mag. 2020, 58, 20–26.

30. Gao, G.; Dong, Y.; Wang, R.; Zhou, X.

EdgeVision: Towards collaborative video

analytics on distributed edges for performance

maximization. IEEE Transactions on Multimedia

2024, 26, 9083–9094.

31. Dong, Y.; Gao, G. EdgeCam: A Distributed

Camera Operating System for Inference

Scheduling and Continuous Learning. In

Proceedings of the 2024 IEEE/ACM Ninth

International Conference on Internet-of-Things

Design and Implementation (IoTDI), Hong

Kong, China, 13–16 May 2024; pp. 225–226.

32. Ran, X.; Chen, H.; Zhu, X.; Liu, Z.; Chen, J.

Deepdecision: A mobile deep learning

framework for edge video analytics. In

Proceedings of the IEEE INFOCOM 2018-IEEE

Conference on Computer Communications,

Honolulu, HI, USA, 15–19 April 2018; IEEE:

Piscataway, NJ, USA, 2018; pp. 1421–1429.

33. Lulla, K.; Chandra, R.; & Ranjan, K. (2025).

Factory-grade diagnostic automation for

GeForce and data centre GPUs. International

Journal of Engineering, Science and Information

Technology, 5(3), 537–544.

https://doi.org/10.52088/ijesty.v5i3.1089

34. Laskaridis, S.; Venieris, S.I.; Almeida, M.;

Leontiadis, I.; Lane, N.D. SPINN: Synergistic

progressive inference of neural networks over

device and cloud. In Proceedings of the 26th

Annual International Conference on Mobile

Computing and Networking, London, UK, 21–

25 September 2020; pp. 1–15.

35. Lulla, K. L., Chandra, R. C., & Sirigiri, K. S.

(2025). Proxy-based thermal and acoustic

evaluation of cloud GPUs for AI training

workloads. The American Journal of Applied

Sciences, 7(7), 111–127.

https://doi.org/10.37547/tajas/Volume07Issue07

-12

36. Zeng, L.; Chen, X.; Zhou, Z.; Yang, L.; Zhang,

J. Coedge: Cooperative dnn inference with

adaptive workload partitioning over

heterogeneous edge devices. IEEE/ACM Trans.

Netw. 2020, 29, 595–608.

37. Tang, X.; Chen, X.; Zeng, L.; Yu, S.; Chen, L.

Joint multiuser dnn partitioning and

computational resource allocation for

collaborative edge intelligence. IEEE Internet

Things J. 2020, 8, 9511–9522.

38. Lulla, K. (2025). Python-based GPU testing

pipelines: Enabling zero-failure production lines.

Journal of Information Systems Engineering and

Management, 10(47s), 978–994.

https://doi.org/10.55278/jisem.2025.10.47s.978

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 50

39. Peng, S.; Shen, Z.; Zheng, Q.; Hou, X.; Jiang, D.;

Yuan, J.; Jin, J. APT-SAT: An Adaptive DNN

Partitioning and Task Offloading Framework

within Collaborative Satellite Computing

Environments. IEEE Trans. Netw. Sci. Eng.

2025.

40. Shao, J.; Zhang, J. Bottlenet++: An end-to-end

approach for feature compression in device-edge

co-inference systems. In Proceedings of the 2020

IEEE International Conference on

Communications Workshops (ICC Workshops),

Dublin, Ireland, 7–11 June 2020; IEEE:

Piscataway, NJ, USA, 2020; pp. 1–6.

41. Zhang, M.; Fang, J.; Teng, Z.; Liu, Y.; Wu, S.

Joint DNN Partitioning and Task Offloading

Based on Attention Mechanism-Aided

Reinforcement Learning. IEEE Trans. Netw.

Serv. Manag. 2025, 22, 2914–2927.

42. Liu, J.; Gao, G. CSVA: Complexity-Driven and

Semantic-Aware Video Analytics via Edge-

Cloud Collaboration. In Proceedings of the

International Conference on Wireless Artificial

Intelligent Computing Systems and

Applications, Tokyo, Japan, 24–26 June 2025;

pp. 107–116.

43. Li, H.; Hu, C.; Jiang, J.; Wang, Z.; Wen, Y.; Zhu,

W. Jalad: Joint accuracy-and latency-aware deep

structure decoupling for edge-cloud execution.

In Proceedings of the 2018 IEEE 24th

International Conference on Parallel and

Distributed Systems (ICPADS), Singapore, 11–

13 December 2018; IEEE: Piscataway, NJ, USA,

2018; pp. 671–678.

44. Reddy Gundla, S. (2025). PostgreSQL Tuning

for Cloud-Native Java: Connection Pooling vs.

Reactive Drivers. International Journal of

Computational and Experimental Science and

Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3479

45. Kumar Enugala, V. (2025). Quantum Sensors for

Micro-Corrosion Detection. International

Journal of Computational and Experimental

Science and Engineering, 11(3).

https://doi.org/10.22399/ijcesen.3481

https://aimjournals.com/index.php/ijmcsit

