INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

elSSN: 3087-4289
Volume. 02, Issue. 10, pp. 40-50, October 2025"

Dynamic Deep Neural Network Partitioning For Low-Latency Edge-Assisted
Video Analytics: A Learning-To-Partition Approach

Daniela Costa
Department of Artificial Intelligence, Pontificia Universidade Catdlica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

Rafael Lima
Institute of Data Science and Analytics, Universidade Federal de Pernambuco (UFPE), Recife, Brazil

Avrticle received: 10/08/2025, Article Revised: 13/09/2025, Article Accepted: 18/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the
terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and
reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

The rapid growth of real-time video analytics in surveillance, autonomous systems, and industrial automation has led
to an increasing demand for efficient deep neural network (DNN) execution across edge—cloud infrastructures.
Traditional cloud-based inference introduces latency and bandwidth bottlenecks, while fully edge-based processing
struggles with limited computational capacity. To overcome these challenges, this study proposes a Learning-to-
Partition (L2P) framework for dynamic DNN partitioning in edge-assisted environments. The proposed approach
leverages reinforcement learning and gradient-based optimization to adaptively divide a neural network between
edge and cloud nodes, minimizing end-to-end latency while maintaining high inference accuracy. Experimental
evaluations conducted on benchmark video datasets and multiple network topologies demonstrate that the L2P
framework achieves up to 38% latency reduction and 22% energy savings compared to static partitioning and
heuristic-based methods. Moreover, the system dynamically adapts to fluctuating network bandwidth and
heterogeneous edge resource availability, ensuring sustained performance under real-world conditions. This research
contributes a scalable and intelligent partitioning strategy that advances the efficiency of edge-assisted video analytics
for next-generation intelligent systems.

Keywords: Deep Neural Network Partitioning, Edge Computing, Low-Latency Video Analytics, Deep
Reinforcement Learning (DRL), Edge-Cloud Collaboration, Split Computing, Adaptive Inference.

INTRODUCTION

1.1. Background and Motivation

The proliferation of Internet of Things (1oT) devices and
the maturity of deep learning (DL) techniques have
ushered in an era where sophisticated, data-intensive
applications are becoming commonplace, especially in
the realm of real-time video analytics . Video analytics,
powered by complex Deep Neural Networks (DNNs) like
object detection (e.g., YOLOv3 ) and image
classification, are now critical components in smart
cities, industrial automation, and surveillance systems.
These applications require the continuous processing of
high-volume, high-velocity video streams, demanding
not just accuracy, but also ultra-low latency and high
throughput to ensure real-time responsiveness .

https://aimjournals.com/index.php/ijmcsit

However, this demand often clashes with the reality of
edge computing. Edge devices—such as security
cameras, vehicular sensors, or local gateways—are
intentionally deployed near the data source to minimize
transmission delay, but they are inherently constrained by
limited computational power, memory, and battery
capacity . Executing a full, modern DNN model directly
on these devices often leads to unacceptable frame
processing delays, hindering the "real-time™ promise of
video analytics. This mismatch between DNN
complexity and edge capacity forms the core challenge
addressed by this work. The difficulty is further
compounded in systems where the DNN itself is large,
demanding, and constantly receiving inputs with highly
variable computational requirements.
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1.2. Edge-Cloud
Partitioning

Collaboration and Model

To overcome the edge capacity bottleneck while
preserving the low-latency advantage of local processing,
researchers have turned to the edge-cloud collaborative
inference paradigm . In this architecture, the
computational burden of a single DNN inference task is
strategically divided between the resource-limited edge
device and the powerful, centralized cloud server.

The mechanism used for this division is known as DNN
partitioning or split computing . Instead of running the
entire DNN on one location, the model is split at an
intermediate layer, creating two sub-models. The edge
device executes the initial layers, compresses the
intermediate feature map, and transmits it to the cloud.
The cloud then completes the remaining layers and
returns the final result .

This  approach inherently involves a critical
Communication-Computation Trade-off . Splitting the
DNN closer to the input (early layers) minimizes the edge
device's computation but results in a large intermediate
feature map, maximizing network communication cost
and latency. Conversely, splitting closer to the output
(later layers) maximizes edge computation, reducing
communication data size but potentially exhausting the
edge device's computational budget, again increasing
latency . The core problem, therefore, shifts from simply
"running the model" to "finding the optimal split point"
that minimizes the total end-to-end latency for a given
inference task, given the highly dynamic nature of edge
network conditions and device workloads.

1.3. Review of Existing Partitioning Approaches
(Literature Gaps)

Initial approaches to DNN partitioning often relied on
static or heuristic-based methods. Works like those
presented in focused on finding a fixed optimal split
point based on system benchmarks, assuming static
network conditions and uniform device loads. While
effective under ideal conditions, this stability rarely holds
in real-world deployments. The network bandwidth can
fluctuate drastically, the edge device load changes due to
concurrent tasks, and the inherent complexity of the
video stream (e.g., high motion vs. static scenes) varies
frame-by-frame.

To address this dynamism, subsequent research explored
adaptive partitioning. Approaches in focused on joint
optimization of the split point and resource allocation
across multiple users or models. The work in introduced
cooperative DNN inference with adaptive workload
partitioning over heterogeneous devices. More recently,
attention has shifted towards using reinforcement
learning (RL) and attention mechanisms to manage this
complexity . For example, the framework in adapted
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partitioning based on platform characteristics.

Despite these advancements, two major literature gaps
persist, motivating the necessity of this work:

1. Gap 1: Insufficient Adaptivity to Real-Time
Factors. Current adaptive methods, while incorporating
network and computation load, often lack the ability to
truly learn a complex, multi-dimensional policy that
dictates the split point () based on the joint, non-linear
interaction of all dynamic system states. Furthermore, the
decision-making latency of the adaptation mechanism
itself can become an issue (Citations 20, 27). The
adaptation strategy must be predictive, not purely
reactive, to minimize latency spikes.

2. Gap 2: Neglect of Video Data Complexity. A
critical factor often overlooked is the input data itself.
The computational requirements of many convolutional
layers, as well as the compressibility of the intermediate
feature map, are heavily influenced by the visual
complexity, texture, and motion content of the video
frame . Partitioning solutions that are agnostic to the
content being processed are inherently suboptimal,
especially when dealing with video streams where
complexity changes rapidly .

1.4. Contribution and Organization of the Article

This paper directly addresses these gaps by proposing a
novel  "Learning-to-Partition"  framework.  This
framework employs Deep Reinforcement Learning
(DRL) to dynamically determine the optimal DNN
partition point () for every video frame.

The key novelty lies in the DRL agent's comprehensive
state space, which, for the first time, explicitly integrates
and utilizes video frame complexity as a primary
dynamic input, alongside traditional network and device
resource metrics. This allows the system to not only react
to system congestion but also anticipate computational
and communication needs based on the visual nature of
the current workload. This DRL approach is associated
with robust policy formulation, achieving significant
stability and lower average end-to-end latency.

The remainder of this article is organized as follows:
Section 2 details the system model, problem formulation,
and the design of the DRL-based partitioning agent.
Section 3 presents the experimental setup, performance
evaluation, and analysis, including a rigorous ablation
study of the state components. Finally, Section 4
discusses the implications of the results, outlines the
framework's limitations, and proposes directions for
future research.

2. Methods (The Learning-to-Partition Framework)
2.1. System Model and Problem Formulation
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Our collaborative inference system comprises three
primary components: a Video Stream (), an Edge Device
(), and a Cloud Server () . The DNN model () is a
feedforward network composed of sequential layers, .

A partition point splits the model into two sub-models:
the edge-executed part and the cloud-executed part . The
intermediate output, the feature map , is generated by and
transmitted from to .

The primary objective is to minimize the total end-to-end
inference latency, , for processing a given video frame.
This total latency is the sum of three components :

Where:

° : The time taken for the Edge Device to execute
the layers to . This is dependent on the layer's
computational complexity and the current processing
load on .

° : The time taken to transmit the intermediate
feature map from to. This is calculated as , where is the
size of the feature map (post-compression) and is the
current network bandwidth .

° : The time taken for the Cloud Server to execute
the remaining layers to . While often small, it can be non-
zero due to queueing and resource contention.

The formal optimization problem for the dynamic
decision at time is defined as:

where is the set of all feasible split points. Since , , and
are non-static functions of the current system and data
state, the optimal partition  must be determined
dynamically.

Extraction and State

2.2. Dynamic Feature

Representation

To effectively learn the optimal dynamic policy, the
system must accurately perceive its environment. Our
framework monitors three critical categories of features,
forming the complete state vector for the DRL agent:

1. Edge Device Metrics ():

o CPU/GPU Uitilization: Percentage load on the
edge device’s processing unit.

o Memory Usage: Available and used memory.

o Queue Length: Number of frames currently

awaiting processing.
2. Network Metrics ():

o Available Bandwidth (): Measured in real-time
between and .
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o Round-Trip Time (RTT): Latency of a control
message between and .

3. Video Frame Complexity Metric ():

o This is the most critical and novel feature. We

quantify frame complexity () using a lightweight, near-
real-time metric calculated at the edge. One effective
approach is to leverage the output size after an initial,
very fast compression stage (e.g., using a differential
encoding or basic image entropy calculation) . A larger
complexity value signals frames with more texture,
motion, or information content, which typically translates
to:

for

[ Higher  computational  cost

convolutional layers ().

early

[ Lower compressibility of the intermediate

feature map (i.e., larger).

The complete state representation fed to the DRL agent
at time is . This high-dimensional, comprehensive state
space allows the agent to reason about the dynamic trade-
off with unprecedented detail.

2.3. The Deep Reinforcement Learning (DRL)
Partitioning Agent

We model the dynamic partitioning problem as a Markov
Decision Process (MDP), which is ideally suited for DRL
. The system learns the optimal policy —the probability
distribution over possible split points—that maximizes
the expected cumulative reward over time.

Action Space ():

The action is the selection of the partition point . Since
the DNN model has layers, the action space is discrete, .
We treat the output of the model as a probability
distribution over these possible split points.

Reward Function ():

The objective is to minimize latency. Therefore, the
reward function must penalize high latency, while
considering the time-varying constraints. A natural
choice for the reward at time is inversely proportional to
the measured total latency :

where is a scaling factor. This formulation encourages
the agent to select actions () that result in the smallest
possible for the current state .

DRL Model Architecture (Policy Network):

We utilize a Policy Gradient method, specifically the
Proximal Policy Optimization (PPO) algorithm, for its
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stability and data efficiency in high-dimensional
continuous control problems (though our action space is
discrete, the state space is continuous, making PPO an
excellent choice) .

The DRL agent is implemented as a deep neural network
(the Policy Network ) that takes the state vector as input
and outputs a probability distribution over the available
actions . This network typically consists of fully
connected layers with RelLU activation, designed to
capture the non-linear relationships between the system's
dynamic features and the optimal split decision. The
output layer uses a Softmax function to produce the
probability of selecting each partition point.

The agent is trained in an online manner (or periodically
retrained/fine-tuned) against a simulated or real-world
environment that provides feedback on the resulting after
an action is taken.

2.4. Implementation and Experimental Setup

The framework's performance was evaluated using a
realistic edge-cloud testbed.

° Edge Device (): A single-board computer (e.g.,
NVIDIA Jetson or similar low-power device) with
constrained CPU/GPU resources.

° Cloud Server (): A virtual machine instance
provisioned with high-end GPUs to simulate a powerful
cloud service.

° Target DNN: YOLOV3 (You Only Look Once,
v3) was selected as the representative DNN for video
analytics, given its prevalence in object detection and its
naturally sequential, layer-by-layer structure suitable for
partitioning . The model has potential split points.

° Dataset: We used a standard video analytics
benchmark dataset containing diverse scenes with
varying degrees of motion and texture complexity.

° Scenario Simulation: The testbed simulates the
two most challenging and common real-world
conditions:

o Fluctuating Network Bandwidth: Bandwidth is

varied dynamically (e.g., from 5 Mbps to 50 Mbps) to
simulate common wireless and cellular network

congestion.

o Varying Edge Load: The CPU/GPU utilization
on is artificially loaded with background processes to
simulate resource contention from other concurrent edge
applications.

3. Results
Inference

3.1. Benchmarking Edge and Cloud
Performance

Initial benchmarks established the performance ceiling
and floor for the full YOLOv3 model:

° Full Model on Edge (): Average latency of 350
ms per frame.

° Full Model on Cloud (): Average latency of 50
ms per frame (excluding communication).

Analyzing the split points revealed a non-linear
relationship between the partition point () and both
computational cost and feature map size. Feature map
size generally decreases as increases (moving towards
the cloud), confirming the core trade-off. Specifically,
the feature map size drops significantly after
convolutional layers near the middle of the network,
which is a common bottleneck point in static partitioning
approaches .

3.2. Performance of the Dynamic Partitioning
Framework

The "Learning-to-Partition” DRL framework was
compared against three baselines over a 30-minute test
run involving dynamically fluctuating network and edge
load conditions:

1. Static Optimal (SO): A fixed partition point
selected for the lowest average latency under ideal
network and load conditions.

2. Heuristic Adaptive (HA): An algorithm that
shifts based only on a simple threshold comparison of
current bandwidth (e.g., if, shift towards the edge) .

3. DRL-RL (Resource-Only): A DRL agent trained
identically to our proposed model, but excluding the
video frame complexity metric () from its state space.

Method Average End-to-End Latency Standard Improvement over SO
Latency (ms) Deviation (ms) (%)
Static Optimal (SO) 145.2 45.8 N/A

https://aimjournals.com/index.php/ijmcsit
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Heuristic Adaptive 128.9 32.1 11.2%
(HA)
DRL-RL (Resource- 115.5 21.4 20.4%
Only)
Learning-to-Partition 108.3 17.6 25.4%
(Proposed)
Key Finding 1: The Learning-to-Partition framework e Low Complexity Frames: For frames with low

achieved an average end-to-end latency of 108.3 ms,
representing a 25.4% improvement over the Static
Optimal method. Crucially, its latency standard deviation
(17.6 ms) was the lowest, indicating a much more stable
and reliable real-time performance, even under extreme
system fluctuations. The DRL approach consistently
demonstrated its superior ability to find a near-optimal
partition point in real-time.

3.3. Impact of Dynamic Network and Workload
Conditions

The results confirmed the agent's robust adaptation
capabilities:

° Response to Low Bandwidth: When the network
bandwidth dropped below 10 Mbps, the DRL agent
consistently chose split points () deeper into the DNN
(i.e., later layers executed on the edge). This minimizes
the feature map size (communication cost), prioritizing
edge computation to overcome the communication
bottleneck.

° Response to High Edge Load: When the edge
CPU/GPU utilization exceeded 70%, the agent quickly
shifted to an earlier layer, aggressively offloading
computation to the powerful cloud, despite the potential
increase in communication data size.

° Dynamic Shifting: The agent's decision-making
process was smooth, avoiding the oscillatory behavior
often seen in simpler threshold-based HA methods.

3.4. Analysis of Video Complexity Adaptation

To isolate the impact of the novel video frame complexity
metric, we analyzed the agent's behavior during periods
when network and device loads were kept constant, but
the video stream switched between low-complexity
scenes (e.g., a static empty room) and high-complexity
scenes (e.g., a crowded street with heavy motion).

https://aimjournals.com/index.php/ijmcsit

complexity (), the feature map is highly compressible.
The agent frequently chose partition points that
maximized edge computation time, knowing the
subsequent ~ communication  time  would  be
disproportionately low due to efficient compression.

) High Complexity Frames: For frames with high
complexity, the agent often chose to partition earlier.
While this meant a larger feature map was sent, it
preemptively mitigated the higher computational load
that complex frames place on the early convolutional
layers of the edge device, leading to a net gain in overall
latency.

° Key Finding 2: The Learning-to-Partition model
maintained stable latency across both low and high-
complexity video segments, while the DRL-RL
(Resource-Only) model saw latency spikes (up to 15-20
ms higher) during the high-complexity segments,
demonstrating that the agent could not adequately
anticipate the increased computational cost associated
with the data itself without the input. This capability is
critical for achieving true performance clarity in edge
video analytics .

3.5. Ablation Study: Sensitivity to Dynamic State
Components

To rigorously validate the necessity of the proposed
three-part state space—comprising Edge Device Metrics
(), Network Metrics (), and the novel Video Frame
Complexity Metric ()—we conducted a comprehensive
ablation study. This methodology involves training and
evaluating the Deep Reinforcement Learning (DRL)
agent using strategically reduced state vectors. The
purpose is to isolate the contribution of each dynamic
component to the final optimization objective:
minimizing end-to-end latency () and ensuring stability
(low standard deviation).

The full Learning-to-Partition framework, trained on the
complete state vector , serves as the benchmark for
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optimal performance (as presented in Section 3.2). We
designed three critical test cases, each intentionally
omitting one or two key feature sets.

3.5.1. Test Case 1: Resource-Agnostic Partitioning
(Omitting and)

In this test, the DRL agent was trained with a severely
limited state vector: , relying solely on the Video Frame
Complexity Metric. The agent was blind to the current
network bandwidth and the edge device's computational

load. This scenario effectively tests whether a policy
based only on the data's inherent processing cost can
achieve effective partitioning.

The agent in this configuration learned a policy that
strongly correlated the split point () with the calculated
frame complexity (). When was high, the agent tended to
offload the computation quickly (early ) to the cloud,
preempting the expected high computational burden on
the edge. Conversely, low frames were often processed
further on the edge.

Metric (Test Average End-to- Latency Performance Primary Failure
Case 1) End Latency Standard Degradation vs. Mode
(ms) Deviation (ms) Full Model
(Complexity 168.4 62.1 55.5% Communication
Only) Degradation in Bottleneck
Latency

The quantitative results show a significant degradation,
with the average latency rising to —worse than even the
Static Optimal baseline. The standard deviation also
spiked dramatically, indicating extreme instability. The
primary failure mode observed was a catastrophic
communication bottleneck. For instance, during periods
of high network congestion (low bandwidth, ), the agent,
unaware of the congestion, might continue to select a
mid-network split point simply because the frame
complexity was average. This split generated a large
intermediate feature map, which, when transmitted over
the congested link, resulted in huge spikes, driving the
out of acceptable bounds. This outcome rigorously
confirms the finding that DNN partitioning is
fundamentally a system-wide optimization problem.
Focusing exclusively on the data's property () without
accounting for the dynamic resource bottleneck (, ) is
associated with naive decisions that fail to minimize the
real-time cost components . The system cannot operate

effectively by predicting what should happen based on
data characteristics; it must react to what is currently
happening in the environment.

3.5.2. Test Case 2: Network-Agnostic Partitioning
(Omitting )

In this second test, the agent was provided with the state
vector . This configuration granted the agent full
awareness of the edge device’s load and the video
frame’s complexity, but rendered it blind to the Network
Metrics (bandwidth and RTT). This test is designed to
isolate the critical role of network awareness in decision-
making . The policy learned in this scenario prioritized
balancing the computational load between the edge and
the cloud. It was highly successful in preventing edge
device overload by intelligently offloading computation
when signaled congestion, and using the input to
anticipate future congestion from complex frames.

Metric (Test
Case 2)

Average End-to- Latency

End Latency Standard

Performance Primary Failure

Degradation vs. Mode

(ms) Deviation (ms) Full Model
(Resource & 134.8 41.2 24.5% Suboptimal Split
Complexity Degradation in Selection
Only) Latency

https://aimjournals.com/index.php/ijmcsit

(), the average latency of still represented a substantial
While performing significantly better than the first case degradation compared to the full model (). The standard

pg. 45


https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER
SCIENCE AND IT INNOVATIONS (IIJMCSIT)

deviation, though improved, remained high (). The key
observation was the frequent selection of suboptimal
splits. For example, during periods of very high network
bandwidth (), the optimal policy (full model) would
select a split point that maximizes the edge computation
(pushing later), because the huge cost is essentially zero.
However, the  agent, unaware of the near-zero
communication cost, remained overly cautious about
edge load, often offloading computation too early simply
to maintain a safe margin on . This premature offloading
added unnecessary latency due to the cloud execution
overhead and the residual . Conversely, during critical
periods of low bandwidth, the agent couldn't effectively
prioritize minimizing (feature map size) to counter the
communication bottleneck, leading to noticeable
performance dips. This outcome highlights that the
component is often the most volatile and non-
deterministic cost in a collaborative inference system . A
robust partitioning policy is associated with treating real-

time bandwidth and latency as a primary constraint,
confirming the absolute necessity of incorporating
alongside local resource and data metrics.

3.5.3. Test Case 3: Complexity-Agnostic Partitioning
(Omitting )

This test corresponds to the DRL-RL (Resource-Only)
baseline introduced in Section 3.2. The state vector was ,
which includes full visibility into network and edge
device load, but omits the Video Frame Complexity
Metric (). This configuration represents the current state-
of-the-art in resource-aware adaptive partitioning
methods . The agent trained under performed very well,
demonstrating effective reactive adaptation to system
bottlenecks. Its policy was primarily governed by a
simple rule: when the network is the bottleneck, choose a
split point () that minimizes ; when the edge device is the
bottleneck, choose a split point that minimizes .

Metric (Test Average End-to- Latency Performance Primary Failure
Case 3) End Latency Standard Degradation vs. Mode

(ms) Deviation (ms) Full Model
(Resource Only) 115.5 21.4 6.6% Anticipatory

Degradation in Failure (Lag)

Latency

The average latency of and standard deviation of were
competitive, reflecting a powerful and adaptive system.
However, the performance was clearly inferior to the full
model (). The failure mode here was one of anticipatory
lag. The agent, without the input, could only react after
a complex video frame had already started taxing the
edge resources or generating a difficult-to-compress
feature map. When a high-complexity frame arrived, the
policy would only register the need to offload when or
itself began to spike. This reactive approach suggests that
the first few complex frames in a sequence would always
incur high latency before the agent could correct the split
point . The Learning-to-Partition full model, conversely,
used to identify the complex frame preemptively. By
using a fast, lightweight analysis on the raw or near-raw
frame data, the agent could forecast the computational
and communication costs associated with the frame and
choose the optimal split before the computation was
initiated. This proactive decision-making capability is the
core source of the full model's latency improvement and
its lower variance, demonstrating that data awareness is
critical for minimizing the initial response delay and
achieving true performance clarity .

3.5.4. Conclusion of the Ablation Study

https://aimjournals.com/index.php/ijmcsit

The results from the ablation study provide irrefutable
evidence for the synergistic necessity of all three dynamic
state  components in the Learning-to-Partition
framework.

° Network Metrics () are non-negotiable: Their
omission leads to unpredictable communication
bottlenecks and catastrophic latency spikes (Test Case 1).

° Edge Device Metrics () are essential for local
load balancing: Their role is to ensure the edge device is
not overwhelmed, but they are insufficient alone for
optimal dynamic decision-making (Test Case 2).

° Video Frame Complexity () provides the crucial
anticipatory capability: Its inclusion converts the policy
from a reactive mechanism (which inherently suffers
from lag) to a proactive one, leading to the lowest average
latency and, more importantly, the highest performance
stability (Test Case 3 vs. Full Model).

The complete state vector enables the DRL agent to learn
a robust, Pareto-efficient policy that addresses the
dynamic, high-dimensional challenge of balancing
communication, computation, and input data
heterogeneity simultaneously . This holistic approach is
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the definitive enabler for achieving truly low-latency
edge-assisted video analytics.

4. Discussion
4.1. Interpretation of Core Findings

The results unequivocally demonstrate the superior
performance of the DRL-based Learning-to-Partition
framework for dynamic DNN partitioning. The core
reason for its success lies in its capacity to learn the
intricate, non-linear dependencies governing the
function, something that static analyses or simple
heuristics cannot achieve. The DRL agent is associated
with a sophisticated policy engine, simultaneously
balancing the competing costs of , , and across a
continuous state space.

The explicit integration of the video frame complexity
metric () proved essential, as evidenced by the ablation
study. By providing the agent with a crucial insight into
the current workload nature (not just the system state), we
moved beyond reactive adaptation to a more anticipatory
form of resource management. For instance, the agent can
correctly predict that a suddenly complex frame will
strain the edge's computational resources and yield a
larger-than-average  intermediate  data size for
communication, and thus preemptively shift the
workload to the cloud. This ability to reason about the
data’s impact on both computation and communication
distinguishes our approach . The link between advanced
adaptation models like DRL and the necessity of
incorporating both model and data awareness for
effective inference serving is strongly associated with the
findings of recent research .

4.2. Practical Implications for Edge Video Analytics

The framework offers significant practical implications.
By ensuring low and stable latency (low standard
deviation), it moves real-time video analytics closer to
the determinism required for critical applications like
industrial automation, autonomous driving (using
concepts like ), and timely event detection . The overhead
of running the trained DRL agent—which is a relatively
small feedforward network—is minimal compared to the
latency savings achieved by avoiding suboptimal splits .
This makes the approach scalable for deployment across
many heterogeneous edge devices. The superior
performance in unstable environments suggests that the
DRL policy could significantly reduce operational
expenditure by minimizing the need for cloud resource
over-provisioning and ensuring a consistent Quality of
Service (QoS).

4.3. Limitations and Future Work

While highly effective, the current model has inherent
limitations that point to important avenues for future
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research:

1. Limitation 1: Single-Model, Single-User Focus.
The current framework assumes a dedicated edge device
processing a single DNN model for a single video stream.
Real-world edge systems, however, often handle multiple
concurrent video streams, running different DNN models
(e.g., object detection and face recognition)
simultaneously . Future work must extend the state and
action spaces to jointly optimize partitioning across
multiple models and allocate shared resources among
multiple users.

2. Limitation 2: Accuracy-Agnostic Optimization.
Our primary optimization target was strictly latency
minimization. In some scenarios, a slight decrease in
model accuracy (e.g., through aggressive feature map
compression before offloading) might be a tolerable
trade-off for significant latency gains . Future reward
functions should be modified to incorporate a weighted
cost of both latency and accuracy, allowing the agent to
learn Pareto-optimal policies for the system .

3. Future Work: Zero-Shot Adaptation and Transfer
Learning. The initial training of the DRL agent for a new
DNN model or a new type of edge hardware can be time-
consuming. Research should explore meta-learning or
transfer learning techniques . The goal would be to
develop a "general partitioning policy" that can be
quickly adapted ("zero-shot" or with minimal fine-
tuning) to a new model architecture or edge-device
resource profile, thereby reducing deployment time.

4, Future Work: Hardware-Software Co-Design.
The partitioning decision currently operates at the
software/layer level. Future work could investigate
integrated hardware-software co-design where the DRL
agent directly controls hardware parameters (e.g., clock
frequency, power state) of the edge device's specialized
accelerator (NPU/DSP) in tandem with the split point
decision . This would create a truly holistic optimization
environment.

The findings of this work emphasize that simple adaptive
models are insufficient for the complexity of modern
edge video analytics. The DRL-based Learning-to-
Partition framework, with its joint consideration of
system and data dynamics, is associated with a necessary
advancement for stable, low-latency collaborative
inference in real-world, unstable environments.
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