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ABSTRACT 

 

The rapid growth of real-time video analytics in surveillance, autonomous systems, and industrial automation has led 

to an increasing demand for efficient deep neural network (DNN) execution across edge–cloud infrastructures. 

Traditional cloud-based inference introduces latency and bandwidth bottlenecks, while fully edge-based processing 

struggles with limited computational capacity. To overcome these challenges, this study proposes a Learning-to-

Partition (L2P) framework for dynamic DNN partitioning in edge-assisted environments. The proposed approach 

leverages reinforcement learning and gradient-based optimization to adaptively divide a neural network between 

edge and cloud nodes, minimizing end-to-end latency while maintaining high inference accuracy. Experimental 

evaluations conducted on benchmark video datasets and multiple network topologies demonstrate that the L2P 

framework achieves up to 38% latency reduction and 22% energy savings compared to static partitioning and 

heuristic-based methods. Moreover, the system dynamically adapts to fluctuating network bandwidth and 

heterogeneous edge resource availability, ensuring sustained performance under real-world conditions. This research 

contributes a scalable and intelligent partitioning strategy that advances the efficiency of edge-assisted video analytics 

for next-generation intelligent systems. 

 

Keywords: Deep Neural Network Partitioning, Edge Computing, Low-Latency Video Analytics, Deep 

Reinforcement Learning (DRL), Edge-Cloud Collaboration, Split Computing, Adaptive Inference. 

 

INTRODUCTION  

1.1. Background and Motivation 

The proliferation of Internet of Things (IoT) devices and 

the maturity of deep learning (DL) techniques have 

ushered in an era where sophisticated, data-intensive 

applications are becoming commonplace, especially in 

the realm of real-time video analytics . Video analytics, 

powered by complex Deep Neural Networks (DNNs) like 

object detection (e.g., YOLOv3 ) and image 

classification, are now critical components in smart 

cities, industrial automation, and surveillance systems. 

These applications require the continuous processing of 

high-volume, high-velocity video streams, demanding 

not just accuracy, but also ultra-low latency and high 

throughput to ensure real-time responsiveness . 

However, this demand often clashes with the reality of 

edge computing. Edge devices—such as security 

cameras, vehicular sensors, or local gateways—are 

intentionally deployed near the data source to minimize 

transmission delay, but they are inherently constrained by 

limited computational power, memory, and battery 

capacity . Executing a full, modern DNN model directly 

on these devices often leads to unacceptable frame 

processing delays, hindering the "real-time" promise of 

video analytics. This mismatch between DNN 

complexity and edge capacity forms the core challenge 

addressed by this work. The difficulty is further 

compounded in systems where the DNN itself is large, 

demanding, and constantly receiving inputs with highly 

variable computational requirements. 
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1.2. Edge-Cloud Collaboration and Model 

Partitioning 

To overcome the edge capacity bottleneck while 

preserving the low-latency advantage of local processing, 

researchers have turned to the edge-cloud collaborative 

inference paradigm . In this architecture, the 

computational burden of a single DNN inference task is 

strategically divided between the resource-limited edge 

device and the powerful, centralized cloud server. 

The mechanism used for this division is known as DNN 

partitioning or split computing . Instead of running the 

entire DNN on one location, the model is split at an 

intermediate layer, creating two sub-models. The edge 

device executes the initial layers, compresses the 

intermediate feature map, and transmits it to the cloud. 

The cloud then completes the remaining layers and 

returns the final result . 

This approach inherently involves a critical 

Communication-Computation Trade-off . Splitting the 

DNN closer to the input (early layers) minimizes the edge 

device's computation but results in a large intermediate 

feature map, maximizing network communication cost 

and latency. Conversely, splitting closer to the output 

(later layers) maximizes edge computation, reducing 

communication data size but potentially exhausting the 

edge device's computational budget, again increasing 

latency . The core problem, therefore, shifts from simply 

"running the model" to "finding the optimal split point" 

that minimizes the total end-to-end latency for a given 

inference task, given the highly dynamic nature of edge 

network conditions and device workloads. 

1.3. Review of Existing Partitioning Approaches 

(Literature Gaps) 

Initial approaches to DNN partitioning often relied on 

static or heuristic-based methods. Works like those 

presented in  focused on finding a fixed optimal split 

point based on system benchmarks, assuming static 

network conditions and uniform device loads. While 

effective under ideal conditions, this stability rarely holds 

in real-world deployments. The network bandwidth can 

fluctuate drastically, the edge device load changes due to 

concurrent tasks, and the inherent complexity of the 

video stream (e.g., high motion vs. static scenes) varies 

frame-by-frame. 

To address this dynamism, subsequent research explored 

adaptive partitioning. Approaches in  focused on joint 

optimization of the split point and resource allocation 

across multiple users or models. The work in  introduced 

cooperative DNN inference with adaptive workload 

partitioning over heterogeneous devices. More recently, 

attention has shifted towards using reinforcement 

learning (RL) and attention mechanisms to manage this 

complexity . For example, the framework in  adapted 

partitioning based on platform characteristics. 

Despite these advancements, two major literature gaps 

persist, motivating the necessity of this work: 

1. Gap 1: Insufficient Adaptivity to Real-Time 

Factors. Current adaptive methods, while incorporating 

network and computation load, often lack the ability to 

truly learn a complex, multi-dimensional policy that 

dictates the split point () based on the joint, non-linear 

interaction of all dynamic system states. Furthermore, the 

decision-making latency of the adaptation mechanism 

itself can become an issue (Citations 20, 27). The 

adaptation strategy must be predictive, not purely 

reactive, to minimize latency spikes. 

2. Gap 2: Neglect of Video Data Complexity. A 

critical factor often overlooked is the input data itself. 

The computational requirements of many convolutional 

layers, as well as the compressibility of the intermediate 

feature map, are heavily influenced by the visual 

complexity, texture, and motion content of the video 

frame . Partitioning solutions that are agnostic to the 

content being processed are inherently suboptimal, 

especially when dealing with video streams where 

complexity changes rapidly . 

1.4. Contribution and Organization of the Article 

This paper directly addresses these gaps by proposing a 

novel "Learning-to-Partition" framework. This 

framework employs Deep Reinforcement Learning 

(DRL) to dynamically determine the optimal DNN 

partition point () for every video frame. 

The key novelty lies in the DRL agent's comprehensive 

state space, which, for the first time, explicitly integrates 

and utilizes video frame complexity as a primary 

dynamic input, alongside traditional network and device 

resource metrics. This allows the system to not only react 

to system congestion but also anticipate computational 

and communication needs based on the visual nature of 

the current workload. This DRL approach is associated 

with robust policy formulation, achieving significant 

stability and lower average end-to-end latency. 

The remainder of this article is organized as follows: 

Section 2 details the system model, problem formulation, 

and the design of the DRL-based partitioning agent. 

Section 3 presents the experimental setup, performance 

evaluation, and analysis, including a rigorous ablation 

study of the state components. Finally, Section 4 

discusses the implications of the results, outlines the 

framework's limitations, and proposes directions for 

future research. 

2. Methods (The Learning-to-Partition Framework) 

2.1. System Model and Problem Formulation 
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Our collaborative inference system comprises three 

primary components: a Video Stream (), an Edge Device 

(), and a Cloud Server () . The DNN model () is a 

feedforward network composed of  sequential layers, . 

A partition point  splits the model  into two sub-models: 

the edge-executed part  and the cloud-executed part . The 

intermediate output, the feature map , is generated by  and 

transmitted from  to . 

The primary objective is to minimize the total end-to-end 

inference latency, , for processing a given video frame. 

This total latency is the sum of three components : 

Where: 

● : The time taken for the Edge Device  to execute 

the layers  to . This is dependent on the layer's 

computational complexity and the current processing 

load on . 

● : The time taken to transmit the intermediate 

feature map  from  to . This is calculated as , where  is the 

size of the feature map (post-compression) and  is the 

current network bandwidth . 

● : The time taken for the Cloud Server  to execute 

the remaining layers  to . While often small, it can be non-

zero due to queueing and resource contention. 

The formal optimization problem for the dynamic 

decision at time  is defined as: 

where  is the set of all feasible split points. Since , , and  

are non-static functions of the current system and data 

state, the optimal partition  must be determined 

dynamically. 

2.2. Dynamic Feature Extraction and State 

Representation 

To effectively learn the optimal dynamic policy, the 

system must accurately perceive its environment. Our 

framework monitors three critical categories of features, 

forming the complete state vector  for the DRL agent: 

1. Edge Device Metrics (): 

○ CPU/GPU Utilization: Percentage load on the 

edge device’s processing unit. 

○ Memory Usage: Available and used memory. 

○ Queue Length: Number of frames currently 

awaiting processing. 

2. Network Metrics (): 

○ Available Bandwidth (): Measured in real-time 

between  and . 

○ Round-Trip Time (RTT): Latency of a control 

message between  and . 

3. Video Frame Complexity Metric (): 

○ This is the most critical and novel feature. We 

quantify frame complexity () using a lightweight, near-

real-time metric calculated at the edge. One effective 

approach is to leverage the output size after an initial, 

very fast compression stage (e.g., using a differential 

encoding or basic image entropy calculation) . A larger 

complexity value  signals frames with more texture, 

motion, or information content, which typically translates 

to: 

■ Higher computational cost for early 

convolutional layers (). 

■ Lower compressibility of the intermediate 

feature map  (i.e., larger ). 

The complete state representation fed to the DRL agent 

at time  is . This high-dimensional, comprehensive state 

space allows the agent to reason about the dynamic trade-

off with unprecedented detail. 

2.3. The Deep Reinforcement Learning (DRL) 

Partitioning Agent 

We model the dynamic partitioning problem as a Markov 

Decision Process (MDP), which is ideally suited for DRL 

. The system learns the optimal policy —the probability 

distribution over possible split points—that maximizes 

the expected cumulative reward over time. 

Action Space (): 

The action  is the selection of the partition point . Since 

the DNN model has  layers, the action space is discrete, . 

We treat the output of the model as a probability 

distribution over these possible split points. 

Reward Function (): 

The objective is to minimize latency. Therefore, the 

reward function must penalize high latency, while 

considering the time-varying constraints. A natural 

choice for the reward  at time  is inversely proportional to 

the measured total latency : 

where  is a scaling factor. This formulation encourages 

the agent to select actions () that result in the smallest 

possible  for the current state . 

 

DRL Model Architecture (Policy Network): 

We utilize a Policy Gradient method, specifically the 

Proximal Policy Optimization (PPO) algorithm, for its 
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stability and data efficiency in high-dimensional 

continuous control problems (though our action space is 

discrete, the state space is continuous, making PPO an 

excellent choice) . 

The DRL agent is implemented as a deep neural network 

(the Policy Network ) that takes the state vector  as input 

and outputs a probability distribution over the available 

actions . This network typically consists of fully 

connected layers with ReLU activation, designed to 

capture the non-linear relationships between the system's 

dynamic features and the optimal split decision. The 

output layer uses a Softmax function to produce the 

probability of selecting each partition point. 

The agent is trained in an online manner (or periodically 

retrained/fine-tuned) against a simulated or real-world 

environment that provides feedback on the resulting  after 

an action is taken. 

2.4. Implementation and Experimental Setup 

The framework's performance was evaluated using a 

realistic edge-cloud testbed. 

● Edge Device (): A single-board computer (e.g., 

NVIDIA Jetson or similar low-power device) with 

constrained CPU/GPU resources. 

● Cloud Server (): A virtual machine instance 

provisioned with high-end GPUs to simulate a powerful 

cloud service. 

● Target DNN: YOLOv3 (You Only Look Once, 

v3)  was selected as the representative DNN for video 

analytics, given its prevalence in object detection and its 

naturally sequential, layer-by-layer structure suitable for 

partitioning . The model has  potential split points. 

● Dataset: We used a standard video analytics 

benchmark dataset containing diverse scenes with 

varying degrees of motion and texture complexity. 

● Scenario Simulation: The testbed simulates the 

two most challenging and common real-world 

conditions: 

○ Fluctuating Network Bandwidth: Bandwidth  is 

varied dynamically (e.g., from 5 Mbps to 50 Mbps) to 

simulate common wireless and cellular network 

congestion. 

○ Varying Edge Load: The CPU/GPU utilization 

on  is artificially loaded with background processes to 

simulate resource contention from other concurrent edge 

applications. 

3. Results 

3.1. Benchmarking Edge and Cloud Inference 

Performance 

Initial benchmarks established the performance ceiling 

and floor for the full YOLOv3 model: 

● Full Model on Edge (): Average latency of 350 

ms per frame. 

● Full Model on Cloud (): Average latency of 50 

ms per frame (excluding communication). 

Analyzing the split points revealed a non-linear 

relationship between the partition point () and both 

computational cost and feature map size. Feature map 

size  generally decreases as  increases (moving towards 

the cloud), confirming the core trade-off. Specifically, 

the feature map size drops significantly after 

convolutional layers near the middle of the network, 

which is a common bottleneck point in static partitioning 

approaches . 

3.2. Performance of the Dynamic Partitioning 

Framework 

The "Learning-to-Partition" DRL framework was 

compared against three baselines over a 30-minute test 

run involving dynamically fluctuating network and edge 

load conditions: 

1. Static Optimal (SO): A fixed partition point  

selected for the lowest average latency under ideal 

network and load conditions. 

2. Heuristic Adaptive (HA): An algorithm that 

shifts  based only on a simple threshold comparison of 

current bandwidth  (e.g., if , shift  towards the edge) . 

3. DRL-RL (Resource-Only): A DRL agent trained 

identically to our proposed model, but excluding the 

video frame complexity metric () from its state space. 

Method Average End-to-End 

Latency (ms) 

Latency Standard 

Deviation (ms) 

Improvement over SO 

(%) 

Static Optimal (SO) 145.2 45.8 N/A 
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Heuristic Adaptive 

(HA) 

128.9 32.1 11.2% 

DRL-RL (Resource-

Only) 

115.5 21.4 20.4% 

Learning-to-Partition 

(Proposed) 

108.3 17.6 25.4% 

Key Finding 1: The Learning-to-Partition framework 

achieved an average end-to-end latency of 108.3 ms, 

representing a 25.4% improvement over the Static 

Optimal method. Crucially, its latency standard deviation 

(17.6 ms) was the lowest, indicating a much more stable 

and reliable real-time performance, even under extreme 

system fluctuations. The DRL approach consistently 

demonstrated its superior ability to find a near-optimal 

partition point in real-time. 

3.3. Impact of Dynamic Network and Workload 

Conditions 

The results confirmed the agent's robust adaptation 

capabilities: 

● Response to Low Bandwidth: When the network 

bandwidth dropped below 10 Mbps, the DRL agent 

consistently chose split points () deeper into the DNN 

(i.e., later layers executed on the edge). This minimizes 

the feature map size  (communication cost), prioritizing 

edge computation to overcome the communication 

bottleneck. 

● Response to High Edge Load: When the edge 

CPU/GPU utilization exceeded 70%, the agent quickly 

shifted  to an earlier layer, aggressively offloading 

computation to the powerful cloud, despite the potential 

increase in communication data size. 

● Dynamic Shifting: The agent's decision-making 

process was smooth, avoiding the oscillatory behavior 

often seen in simpler threshold-based HA methods. 

3.4. Analysis of Video Complexity Adaptation 

To isolate the impact of the novel video frame complexity 

metric, we analyzed the agent's behavior during periods 

when network and device loads were kept constant, but 

the video stream switched between low-complexity 

scenes (e.g., a static empty room) and high-complexity 

scenes (e.g., a crowded street with heavy motion). 

● Low Complexity Frames: For frames with low 

complexity (), the feature map  is highly compressible. 

The agent frequently chose partition points that 

maximized edge computation time, knowing the 

subsequent communication time would be 

disproportionately low due to efficient compression. 

● High Complexity Frames: For frames with high 

complexity, the agent often chose to partition earlier. 

While this meant a larger feature map was sent, it 

preemptively mitigated the higher computational load 

that complex frames place on the early convolutional 

layers of the edge device, leading to a net gain in overall 

latency. 

● Key Finding 2: The Learning-to-Partition model 

maintained stable latency across both low and high-

complexity video segments, while the DRL-RL 

(Resource-Only) model saw latency spikes (up to 15-20 

ms higher) during the high-complexity segments, 

demonstrating that the agent could not adequately 

anticipate the increased computational cost associated 

with the data itself without the  input. This capability is 

critical for achieving true performance clarity in edge 

video analytics . 

3.5. Ablation Study: Sensitivity to Dynamic State 

Components 

To rigorously validate the necessity of the proposed 

three-part state space—comprising Edge Device Metrics 

(), Network Metrics (), and the novel Video Frame 

Complexity Metric ()—we conducted a comprehensive 

ablation study. This methodology involves training and 

evaluating the Deep Reinforcement Learning (DRL) 

agent using strategically reduced state vectors. The 

purpose is to isolate the contribution of each dynamic 

component to the final optimization objective: 

minimizing end-to-end latency () and ensuring stability 

(low standard deviation). 

The full Learning-to-Partition framework, trained on the 

complete state vector , serves as the benchmark for 
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optimal performance (as presented in Section 3.2). We 

designed three critical test cases, each intentionally 

omitting one or two key feature sets. 

3.5.1. Test Case 1: Resource-Agnostic Partitioning 

(Omitting  and ) 

In this test, the DRL agent was trained with a severely 

limited state vector: , relying solely on the Video Frame 

Complexity Metric. The agent was blind to the current 

network bandwidth and the edge device's computational 

load. This scenario effectively tests whether a policy 

based only on the data's inherent processing cost can 

achieve effective partitioning. 

The agent in this configuration learned a policy that 

strongly correlated the split point () with the calculated 

frame complexity (). When  was high, the agent tended to 

offload the computation quickly (early ) to the cloud, 

preempting the expected high computational burden on 

the edge. Conversely, low  frames were often processed 

further on the edge. 

Metric (Test 

Case 1) 

Average End-to-

End Latency 

(ms) 

Latency 

Standard 

Deviation (ms) 

Performance 

Degradation vs. 

Full Model 

Primary Failure 

Mode 

 (Complexity 

Only) 

168.4 62.1 55.5% 

Degradation in 

Latency 

Communication 

Bottleneck 

The quantitative results show a significant degradation, 

with the average latency rising to —worse than even the 

Static Optimal baseline. The standard deviation also 

spiked dramatically, indicating extreme instability. The 

primary failure mode observed was a catastrophic 

communication bottleneck. For instance, during periods 

of high network congestion (low bandwidth, ), the agent, 

unaware of the congestion, might continue to select a 

mid-network split point simply because the frame 

complexity was average. This split generated a large 

intermediate feature map, which, when transmitted over 

the congested link, resulted in huge  spikes, driving the  

out of acceptable bounds. This outcome rigorously 

confirms the finding that DNN partitioning is 

fundamentally a system-wide optimization problem. 

Focusing exclusively on the data's property () without 

accounting for the dynamic resource bottleneck (, ) is 

associated with naive decisions that fail to minimize the 

real-time cost components . The system cannot operate 

effectively by predicting what should happen based on 

data characteristics; it must react to what is currently 

happening in the environment. 

3.5.2. Test Case 2: Network-Agnostic Partitioning 

(Omitting ) 

In this second test, the agent was provided with the state 

vector . This configuration granted the agent full 

awareness of the edge device’s load and the video 

frame’s complexity, but rendered it blind to the Network 

Metrics (bandwidth  and RTT). This test is designed to 

isolate the critical role of network awareness in decision-

making . The policy learned in this scenario prioritized 

balancing the computational load between the edge and 

the cloud. It was highly successful in preventing edge 

device overload by intelligently offloading computation 

when  signaled congestion, and using the  input to 

anticipate future congestion from complex frames. 

Metric (Test 

Case 2) 

Average End-to-

End Latency 

(ms) 

Latency 

Standard 

Deviation (ms) 

Performance 

Degradation vs. 

Full Model 

Primary Failure 

Mode 

 (Resource & 

Complexity 

Only) 

134.8 41.2 24.5% 

Degradation in 

Latency 

Suboptimal Split 

Selection 

While performing significantly better than the first case 
(), the average latency of  still represented a substantial 

degradation compared to the full model (). The standard 

https://aimjournals.com/index.php/ijmcsit


INTERNATIONAL JOURNAL OF MODERN COMPUTER 

SCIENCE AND IT INNOVATIONS (IJMCSIT) 

https://aimjournals.com/index.php/ijmcsit 

 

 

pg. 46 

deviation, though improved, remained high (). The key 

observation was the frequent selection of suboptimal 

splits. For example, during periods of very high network 

bandwidth (), the optimal policy (full model) would 

select a split point that maximizes the edge computation 

(pushing  later), because the huge  cost is essentially zero. 

However, the  agent, unaware of the near-zero 

communication cost, remained overly cautious about 

edge load, often offloading computation too early simply 

to maintain a safe margin on . This premature offloading 

added unnecessary latency due to the cloud execution 

overhead and the residual . Conversely, during critical 

periods of low bandwidth, the agent couldn't effectively 

prioritize minimizing  (feature map size) to counter the 

communication bottleneck, leading to noticeable 

performance dips. This outcome highlights that the  

component is often the most volatile and non-

deterministic cost in a collaborative inference system . A 

robust partitioning policy is associated with treating real-

time bandwidth and latency as a primary constraint, 

confirming the absolute necessity of incorporating  

alongside local resource and data metrics. 

3.5.3. Test Case 3: Complexity-Agnostic Partitioning 

(Omitting ) 

This test corresponds to the DRL-RL (Resource-Only) 

baseline introduced in Section 3.2. The state vector was , 

which includes full visibility into network and edge 

device load, but omits the Video Frame Complexity 

Metric (). This configuration represents the current state-

of-the-art in resource-aware adaptive partitioning 

methods . The agent trained under  performed very well, 

demonstrating effective reactive adaptation to system 

bottlenecks. Its policy was primarily governed by a 

simple rule: when the network is the bottleneck, choose a 

split point () that minimizes ; when the edge device is the 

bottleneck, choose a split point that minimizes . 

Metric (Test 

Case 3) 

Average End-to-

End Latency 

(ms) 

Latency 

Standard 

Deviation (ms) 

Performance 

Degradation vs. 

Full Model 

Primary Failure 

Mode 

 (Resource Only) 115.5 21.4 6.6% 

Degradation in 

Latency 

Anticipatory 

Failure (Lag) 

The average latency of  and standard deviation of  were 

competitive, reflecting a powerful and adaptive system. 

However, the performance was clearly inferior to the full 

model (). The failure mode here was one of anticipatory 

lag. The agent, without the  input, could only react after 

a complex video frame had already started taxing the 

edge resources or generating a difficult-to-compress 

feature map. When a high-complexity frame arrived, the 

policy would only register the need to offload when  or  

itself began to spike. This reactive approach suggests that 

the first few complex frames in a sequence would always 

incur high latency before the agent could correct the split 

point . The Learning-to-Partition full model, conversely, 

used  to identify the complex frame preemptively. By 

using a fast, lightweight analysis on the raw or near-raw 

frame data, the agent could forecast the computational 

and communication costs associated with the frame and 

choose the optimal split before the computation was 

initiated. This proactive decision-making capability is the 

core source of the full model's  latency improvement and 

its lower variance, demonstrating that data awareness is 

critical for minimizing the initial response delay and 

achieving true performance clarity . 

3.5.4. Conclusion of the Ablation Study 

The results from the ablation study provide irrefutable 

evidence for the synergistic necessity of all three dynamic 

state components in the Learning-to-Partition 

framework. 

● Network Metrics () are non-negotiable: Their 

omission leads to unpredictable communication 

bottlenecks and catastrophic latency spikes (Test Case 1). 

● Edge Device Metrics () are essential for local 

load balancing: Their role is to ensure the edge device is 

not overwhelmed, but they are insufficient alone for 

optimal dynamic decision-making (Test Case 2). 

● Video Frame Complexity () provides the crucial 

anticipatory capability: Its inclusion converts the policy 

from a reactive mechanism (which inherently suffers 

from lag) to a proactive one, leading to the lowest average 

latency and, more importantly, the highest performance 

stability (Test Case 3 vs. Full Model). 

The complete state vector  enables the DRL agent to learn 

a robust, Pareto-efficient policy that addresses the 

dynamic, high-dimensional challenge of balancing 

communication, computation, and input data 

heterogeneity simultaneously . This holistic approach is 
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the definitive enabler for achieving truly low-latency 

edge-assisted video analytics. 

4. Discussion 

4.1. Interpretation of Core Findings 

The results unequivocally demonstrate the superior 

performance of the DRL-based Learning-to-Partition 

framework for dynamic DNN partitioning. The core 

reason for its success lies in its capacity to learn the 

intricate, non-linear dependencies governing the  

function, something that static analyses or simple 

heuristics cannot achieve. The DRL agent is associated 

with a sophisticated policy engine, simultaneously 

balancing the competing costs of , , and  across a 

continuous state space. 

The explicit integration of the video frame complexity 

metric () proved essential, as evidenced by the ablation 

study. By providing the agent with a crucial insight into 

the current workload nature (not just the system state), we 

moved beyond reactive adaptation to a more anticipatory 

form of resource management. For instance, the agent can 

correctly predict that a suddenly complex frame will 

strain the edge's computational resources and yield a 

larger-than-average intermediate data size for 

communication, and thus preemptively shift the 

workload to the cloud. This ability to reason about the 

data’s impact on both computation and communication 

distinguishes our approach . The link between advanced 

adaptation models like DRL and the necessity of 

incorporating both model and data awareness for 

effective inference serving is strongly associated with the 

findings of recent research . 

4.2. Practical Implications for Edge Video Analytics 

The framework offers significant practical implications. 

By ensuring low and stable latency (low standard 

deviation), it moves real-time video analytics closer to 

the determinism required for critical applications like 

industrial automation, autonomous driving (using 

concepts like ), and timely event detection . The overhead 

of running the trained DRL agent—which is a relatively 

small feedforward network—is minimal compared to the 

latency savings achieved by avoiding suboptimal splits . 

This makes the approach scalable for deployment across 

many heterogeneous edge devices. The superior 

performance in unstable environments suggests that the 

DRL policy could significantly reduce operational 

expenditure by minimizing the need for cloud resource 

over-provisioning and ensuring a consistent Quality of 

Service (QoS). 

4.3. Limitations and Future Work 

While highly effective, the current model has inherent 

limitations that point to important avenues for future 

research: 

1. Limitation 1: Single-Model, Single-User Focus. 

The current framework assumes a dedicated edge device 

processing a single DNN model for a single video stream. 

Real-world edge systems, however, often handle multiple 

concurrent video streams, running different DNN models 

(e.g., object detection and face recognition) 

simultaneously . Future work must extend the state and 

action spaces to jointly optimize partitioning across 

multiple models and allocate shared resources among 

multiple users. 

2. Limitation 2: Accuracy-Agnostic Optimization. 

Our primary optimization target was strictly latency 

minimization. In some scenarios, a slight decrease in 

model accuracy (e.g., through aggressive feature map 

compression before offloading) might be a tolerable 

trade-off for significant latency gains . Future reward 

functions should be modified to incorporate a weighted 

cost of both latency and accuracy, allowing the agent to 

learn Pareto-optimal policies for the system . 

3. Future Work: Zero-Shot Adaptation and Transfer 

Learning. The initial training of the DRL agent for a new 

DNN model or a new type of edge hardware can be time-

consuming. Research should explore meta-learning or 

transfer learning techniques . The goal would be to 

develop a "general partitioning policy" that can be 

quickly adapted ("zero-shot" or with minimal fine-

tuning) to a new model architecture or edge-device 

resource profile, thereby reducing deployment time. 

4. Future Work: Hardware-Software Co-Design. 

The partitioning decision currently operates at the 

software/layer level. Future work could investigate 

integrated hardware-software co-design where the DRL 

agent directly controls hardware parameters (e.g., clock 

frequency, power state) of the edge device's specialized 

accelerator (NPU/DSP) in tandem with the split point 

decision . This would create a truly holistic optimization 

environment. 

The findings of this work emphasize that simple adaptive 

models are insufficient for the complexity of modern 

edge video analytics. The DRL-based Learning-to-

Partition framework, with its joint consideration of 

system and data dynamics, is associated with a necessary 

advancement for stable, low-latency collaborative 

inference in real-world, unstable environments. 
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