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ABSTRACT

Background: Distributed networks of interacting agents, or multi-agent systems, are fundamental to modeling
complex phenomena in engineering, social science, and biology. The introduction of antagonistic (negative)
interactions, which creates "signed networks," poses significant challenges to system stability and the achievement
of collective agreement. While consensus on signed networks has been studied, ensuring stability, particularly
through decentralized mechanisms, remains a critical open problem. Unaddressed instabilities can lead to unbounded
system states or oscillations, precluding any functional collective behavior.

Methods: This article introduces a novel framework called Local Node Compensation (LNC) to enhance the stability
of distributed systems on signed, undirected graphs. The proposed method involves a decentralized control protocol
where individual nodes adjust their dynamics based on locally available information. We leverage principles from
algebraic graph theory, particularly the spectral properties of the signed Laplacian matrix, to analyze the system. The
stability of the network under the LNC protocol is formally proven using Lyapunov stability theory and analysis of
the system's eigenvalues.

Results: Our theoretical analysis demonstrates that the LNC protocol guarantees system stability under well-defined
conditions. The method effectively shifts the eigenvalues of the signed Laplacian, preventing the instabilities that can
arise from unbalanced network structures. We present extensive numerical simulations on various network
topologies, including both structurally balanced and unbalanced graphs. The results validate our theoretical findings,
showing that the LNC method successfully stabilizes networks that are otherwise unstable and improves the
convergence performance compared to standard protocols.

Conclusion: The Local Node Compensation framework offers a robust, scalable, and fully decentralized solution for
ensuring stability in signed networks. This method overcomes key limitations of existing approaches and has
significant implications for applications requiring coordinated control in the presence of antagonistic interactions,
such as in opinion dynamics, robotic swarms, and distributed computing.

KEYWORDS
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INTRODUCTION
distributed phenomena, from the coordinated flight of

The study of multi-agent systems (MAS), where
autonomous agents interact to achieve collective
objectives, has become a cornerstone of modern science
and engineering. These systems offer a powerful
paradigm for understanding and designing complex,

https://aimjournals.com/index.php/ijmcsit

bird flocks and the swarming behavior of robots to the
formation of public opinion and the operation of
decentralized sensor networks [1], [7], [24], [25]. A
fundamental challenge within MAS is the consensus
problem, where the goal is for all agents to agree on a
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common value, such as position, velocity, or temperature,
by exchanging information only with their local
neighbors [2], [3]. The elegance and utility of consensus
protocols have led to their widespread application and
theoretical investigation, particularly for networks with
switching topologies and communication delays [4].

The mathematical language of graph theory provides the
indispensable framework for modeling and analyzing
these intricate networks of interactions [1], [5]. In this
context, agents are represented as nodes (or vertices) and
their communication links as edges. The structure of
these connections, captured by matrices such as the
adjacency and Laplacian matrices, directly governs the
collective dynamics of the system [6]. For a standard
network where all interactions are cooperative, the graph
Laplacian matrix plays a central role. Its spectral
properties, particularly its smallest non-zero eigenvalue
(the algebraic connectivity), determine the system's
ability to reach consensus and the speed at which it does
S0.

However, the assumption that all interactions are
cooperative is often a simplification that does not hold in
many real-world systems. Interactions can be
antagonistic, competitive, or hostile, necessitating a more
nuanced model. This leads to the concept of signed
graphs, where edges are assigned a positive or negative
sign to represent friendly (cooperative) or hostile
(antagonistic) relationships, respectively [16]. The
introduction of negative interactions fundamentally alters
the system's dynamics. Instead of converging to a single
consensus value, agents in a signed network may exhibit
more complex behaviors, such as splitting into two
opposing factions in a state of bipartite consensus or
forming multiple clusters of agreement [11], [14], [15].
This shift from simple agreement to polarization has
profound implications for modeling social networks,
biological systems, and competitive robotic teams.

The collective behavior of a signed network is deeply
connected to its topology, specifically a property known
as structural balance. A signed network is structurally
balanced if its nodes can be partitioned into two sets (or
"camps") such that all interactions within a camp are
positive, and all interactions between the camps are
negative—an embodiment of the adage, "the friend of my
friend is my friend, and the enemy of my friend is my
enemy" [14], [27]. In such balanced networks, bipartite
consensus is an achievable and predictable outcome.
However, many real-world networks are structurally
unbalanced, containing cycles with an odd number of
negative edges (e.g., "the enemy of my enemy is my
enemy"). These unbalanced structures introduce
frustration into the system, which can lead to instability.

This instability arises from the spectral properties of the
signed Laplacian matrix, the counterpart to the standard
Laplacian for signed graphs [13], [26]. Unlike the
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standard Laplacian, which is always positive semi-
definite, the signed Laplacian of an unbalanced graph can
have negative eigenvalues [29]. In a dynamical system
governed by the equation x'(t)=—Lsx(t), where Ls is the
signed Laplacian, a negative eigenvalue corresponds to a
mode of the system that grows exponentially, driving the
agent states to infinity and rendering the network
unstable. This instability precludes any form of
meaningful collective behavior, be it consensus,
polarization, or clustering. While significant progress has
been made in understanding and controlling signed
networks to achieve specific agreement patterns like
bipartite consensus on matrix-weighted and tracking
control frameworks [17], [18], [20], [21], [22], [23], the
fundamental problem of ensuring stability, especially in
a decentralized manner, remains a critical challenge.
Existing approaches often assume structural balance or
require global information about the network's topology,
which is impractical in large-scale, dynamic, or privacy-
conscious systems [28].

This paper addresses this crucial research gap by
proposing a novel, fully decentralized control protocol
called Local Node Compensation (LNC). The core idea
is that each agent, using only information about its own
state, introduces a local self-damping term into its
dynamics. This compensation is designed to counteract
the destabilizing effects of structural imbalance. We
formally prove that this simple, scalable protocol
guarantees system stability for any signed, undirected
graph, regardless of whether it is structurally balanced or
not. The LNC framework effectively shifts the spectrum
of the system's governing matrix, ensuring all its
eigenvalues have non-negative real parts and thus
preventing unbounded state growth.

This article is structured as follows. Section 2 establishes
the necessary mathematical preliminaries from algebraic
graph theory and formally defines the stability problem
in signed networks. Section 3 introduces the Local Node
Compensation protocol, presents the main stability
theorem, and provides a rigorous proof based on both
Lyapunov theory and spectral analysis. Section 4
validates these theoretical findings through a series of
numerical simulations on various network topologies,
demonstrating the efficacy of the LNC protocol in
stabilizing otherwise unstable systems. Finally, Section 5
discusses the implications of these findings,
acknowledges the limitations of the current study, and
proposes directions for future research.

METHODS

This section is divided into two parts. First, we establish
the mathematical foundations from graph theory and
formally define the system dynamics and the stability
problem. Second, we introduce and analyze our proposed
solution, the Local Node Compensation (LNC) protocol.
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2.1. Preliminaries and Problem Formulation
2.1.1. Notation

Let R denote the set of real numbers. For a matrix A, AT
denotes its transpose. A symmetric matrix PERnxn is
positive definite (PD), denoted P>0, if XTPx>0 for all
non-zero vectors XeRn. It is positive semi-definite
(PSD), denoted P>0, if xTPx>0 for all xeRn. The
eigenvalues of a matrix A are denoted by Ai(A). The real
part of a complex number A is denoted by Re(A).

2.1.2. Fundamentals of Algebraic Graph Theory

An undirected graph is represented by a pair G=(V,E),
where V={1,2,...,n} is the set of nodes (agents) and
ECVxV is the set of edges representing communication
links. An edge between node i and node j is denoted by
(i,J)- The set of neighbors of node i is Ni={jeVI(i,j)EE}.

The topology of the graph is algebraically described by
the adjacency matrix A=[aijJeRnxn, where aij>0 if
(i,)€E, and aij=0 otherwise. For an undirected graph,
aij=aji. The degree matrix is a diagonal matrix
D=diag(d1,...,dn), where the degree of node i is
di=)jeN:iaij.

The graph Laplacian matrix, L=D—A, is a fundamental
tool in the analysis of network dynamics [1], [5]. It is
always symmetric and positive semi-definite for any
undirected graph with positive edge weights. It has at
least one zero eigenvalue, with the corresponding
eigenvector being 1=[1,...,1]T. The number of zero
eigenvalues equals the number of connected components
in the graph. For a connected graph, the smallest non-zero
eigenvalue, A2(L), is called the algebraic connectivity
and quantifies the convergence speed of consensus
protocols [6].

2.1.3. Signed Network Model

A signed graph extends this model by allowing for
antagonistic  interactions. It is represented by
Gs=(V,E,o), where E=E+UE~— partitions the edges into
positive (cooperative) and negative (antagonistic) sets.
The signed adjacency matrix As=[aij] is defined such that
aij>0 if (i,j)€E+, aij<0 if (i,j)€E—, and aij=0 if there is no
edge between i and j.

The signed Laplacian matrix is defined as Ls=D|s|—As,
where DlIs| is the diagonal degree matrix of the
underlying unsigned graph, with entries di|s|=YjeNilaijl
[13], [29]. This matrix captures the dynamics on signed
networks. Unlike the standard Laplacian, Ls is not
guaranteed to be positive semi-definite. Its spectral
properties are closely tied to the concept of structural
balance [14], [16]. A signed graph is structurally
balanced if its node set V can be partitioned into two
disjoint subsets, V1 and V2 (V1uV2=V), such that all
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edges within V1 and V2 are positive (aij>0), and all edges
between V1 and V2 are negative (aij<0). A graph that
does not satisfy this condition is structurally unbalanced.
A key result states that a signed graph is structurally
balanced if and only if its signed Laplacian Ls is positive
semi-definite [14].

2.1.4. System Dynamics and Stability Problem

We consider a network of n agents with continuous-time,
single-integrator dynamics. The state of agent i is
xi(t)eR. The collection of all agent states is the vector
X(t)=[x1(t),....xn(t)]T. The standard linear consensus
protocol is given by:

X i(H)=i NI aij(xj()—xi(t))

In vector form, this is x"(t)=—Lx(t). Since L is PSD, this
system is stable and converges to the consensus subspace.

For a signed network, the dynamics are naturally
extended to:

X 1= ENIY laijl (sgn(aij)xj (t)—xi(t))=j NI Y (aijxj(t)—laij
Ixi(t))

This can be written compactly in vector form as:
X (t)=—Lsx(t)

The stability of this linear time-invariant system is
determined by the eigenvalues of the matrix —Ls. The
system is stable if and only if all eigenvalues of Ls have
non-negative real parts, i.e., Re(Ai(Ls))>0 for all i=1,...,n.
If Ls has an eigenvalue with a negative real part, the
corresponding mode of the system will grow without
bound, leading to instability. As established, this occurs
if and only if the network is structurally unbalanced [13],
[30]. This potential for instability is a major impediment
to the practical application of signed network models.

2.1.5. Problem Statement

The central problem addressed in this paper is to design
a decentralized control protocol that guarantees the
stability of the system x'(t)=—Lsx(t) for any arbitrary
signed, undirected graph, including those that are
structurally unbalanced. The protocol must be
decentralized, meaning the control input for agent i,
denoted ui(t), can only depend on information locally
available to agent i (i.e,, its own state xi(t) and
information from its immediate neighbors). The goal is to
design u(t)=[ul(t),...,un(t)]T such that the modified
system, x'(t)=—Lsx(t)+u(t), is stable for any Ls.

2.2. The Local Node Compensation (LNC) Protocol

To solve the stability problem, we introduce the Local
Node Compensation (LNC) protocol. The intuition is to
add a local self-damping or "grounding” term to each
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agent's dynamics, which acts to dissipate energy and
prevent the state from growing uncontrollably.

2.2.1. Mathematical Formulation of LNC

We propose the following modified dynamics for each
agent i

X" i(t)=—jENIY JaijIxi ()~ NI Y aijxj () —cixi(t)

Here, ci>0 is the compensation gain for node i. This is a
purely local feedback term, as it only depends on agent
i's own state xi(t).

In vector form, the complete system dynamics become:
x'(t)=—Lsx(t)—Cx(t)=—(Ls+C)x(t)

where C=diag(cl,c2,...,cn) is the diagonal matrix of
compensation gains. We define the compensated system
matrix as Lcomp=Ls+C. The stability of the LNC-
modified system now depends on the eigenvalues of
Lcomp.

2.2.2. Design of the Compensation Gain ci

The key feature of the LNC protocol is its simplicity and
decentralized nature. The compensation gains ci must be
chosen to ensure stability. A simple and effective strategy
is to choose a uniform positive gain for all nodes, i.e.,
ci=c>0 for all i. More sophisticated strategies could
involve making ci a function of local network properties,
for instance, proportional to the number or total weight
of negative edges incident to node i. However, for the
purpose of proving stability, we will show that any choice
of C=diag(ci) with ci>0 for at least one node in each
component of the graph that contains an unbalanced cycle
is sufficient. For simplicity and robustness, we focus on
the case where ci=c>0 for all i. This requires no structural
information beyond the agent's own existence.

2.2.3. Stability Analysis

We now formally prove that the LNC protocol stabilizes
the system. We present two complementary proofs: one
based on spectral analysis using the Gershgorin Circle
Theorem, and another based on Lyapunov theory.

Theorem 1 (Stability via LNC): Consider the system
x'(t)=—Lcompx(t) where Lcomp=Ls+C, with Ls being
the signed Laplacian of any undirected signed graph and
C=diag(cl,...,cn) with ci>0. If ci>0 for at least one node
i, then all eigenvalues of Lcomp have non-negative real
parts. If ci>0 for all i=1,...,n, then all eigenvalues of
Lcomp have strictly positive real parts, and the system is
asymptotically stable to the origin.

Proof 1 (via Spectral Analysis):

The Gershgorin Circle Theorem states that every
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eigenvalue of a matrix M=[mij]eCnxn lies within at least
one of the Gershgorin discs in the complex plane. A disc
Gi is centered at mii with radius Ri=>jI=ilmij].

Let's apply this to our compensated matrix Lcomp=Ls+C.
The diagonal and off-diagonal entries of Lcomp are:

° Diagonal:
(Lcomp)ii=(Ls)ii+ci=dils|+ci=)j€Nilaij|+ci

° Off-diagonal: (Lcomp)ij=(Ls)ij=—aij for il '=j
The center of the i-th Gershgorin disc is
mii=) jeNilaij|+ci.

The radius of the i-th disc is

Ri=}Yjl =il(Lcomp)ijl=3j [ '=il—aijl=YjEeNilaij|.

According to the theorem, for any eigenvalue A of
Lcomp, there exists an i such that:

IA—mii | <RilA—GENIY aijl+ci)<ENIY laij|

Let's find the minimum possible real part of A, Re(A). The
leftmost point of the disc Gi on the real axis is mii—Ri.

Re(A)>mii—Ri=(GENIY |aij|+ci)—JENi} |aij|=ci

Since this must hold for some i for each A, this isn't
sufficient on its own. However, since Ls is symmetric,
Lcomp=Ls+C is also symmetric. Therefore, all its
eigenvalues are real. The Gershgorin bound thus applies
directly to the real eigenvalues Ak.

For any eigenvalue Ak(Lcomp), we have Ak>mini(ci).

If we choose ci=c>0 for all i, then every Gershgorin disc
is centered at di|s|+c with radius di|s|. The leftmost point
of any disc is c. Therefore, all eigenvalues Ak(Lcomp)
must be greater than or equal to ¢>0.

This proves that Lcomp is positive definite.
Consequently, the system x'(t)=—Lcompx(t) is
asymptotically stable, with all states converging to the
origin. This approach is related to making the system
matrix strictly diagonally dominant, which has
implications for the definiteness of matrices in power
systems analysis [10] and the study of effective
resistances [8], [30].

Proof 2 (via Lyapunov Theory):

To prove stability, we seek a Lyapunov function V(x)
such that V(x)>0 for x' '=0 and V'(x)<0 along the system
trajectories. Consider the quadratic Lyapunov function
candidate:

V(X)=21xTx

This function is clearly positive definite. Its time
pg. 4
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derivative along the trajectories of x"(t)=—Lcompx(t) is:

V' (x)=21(x Tx+xTx")=21((-Lcompx) Tx+xT(~LcompXx)
)

Since Lcomp is symmetric (Ls is symmetric, C is
diagonal), this simplifies to:

V'(x)=—xTLcompx=—xT(Ls+C)x
We can expand the quadratic form:

xTLsx=1=1Y nj=1) nxi(Ls)ijxj=i=1) ndils|xi2—il =} aij
xixj=21il =53 laijl(xi—sgn(aij)xj)2

And the compensation term is:

xTCx=i=1) ncixi2

So, the derivative is:

V'(x)=—21il 1= laijl(xi—sgn(aij)xj)2+i=1) ncixi2

Since laij|>0 and ci>0, both terms in the parenthesis are
non-negative. Therefore, V' (x)<0, which proves that the
system is stable in the sense of Lyapunov.

To prove asymptotic stability to the origin when all ci>0,
we must show that V' (x)=0 implies x=0. If V'(x)=0, then
we must have ) i=1ncixi2=0. Since all ci>0, this can only
be true if xi=0 for all i=1,...,n. Thus, x=0 is the only
trajectory that can remain in the set where V'(x)=0. By
LaSalle's Invariance Principle, all trajectories converge to
the origin.

2.2.4. Analysis of Convergence and Final State

The LNC protocol fundamentally changes the objective
of the system. The original (unstable) system x'=—Lsx
might have been intended to achieve bipartite consensus.
The compensated system x'=—Lcompx is proven to be
stable, but it now converges to the zero state, x(t)—0 as
t—o0. This is a direct consequence of making the system
matrix Lcomp positive definite, which means it has no
zero eigenvalue (and thus no non-trivial steady state).

While this sacrifices the original consensus objective, it
achieves the primary goal of ensuring stability. In many
applications, preventing catastrophic failure due to
instability is paramount. The convergence to zero can be
interpreted as a "fail-safe™ mode. The rate of convergence
to the origin is determined by the smallest eigenvalue of
Lcomp, Amin(Lcomp). From our spectral analysis, we
know that Amin(Lcomp)>mini(ci). Therefore, the
convergence rate can be directly controlled by choosing
the compensation gains: larger gains lead to faster
convergence to the stable zero state.

RESULTS
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To validate the theoretical analysis of the Local Node
Compensation (LNC) protocol, we conducted a series of
numerical simulations. We demonstrate the protocol's
effectiveness in stabilizing networks that are otherwise
unstable due to structural imbalance by examining a
small, illustrative network and a larger, more complex
random network.

3.1. Simulation Setup

All simulations model the continuous-time dynamics
x'(t)=—Mx(t), where M is the system matrix (Ls for the
uncompensated system and Lcomp for the compensated
system). The system is integrated using a standard
ordinary differential equation solver. The initial states of
the agents, x(0), are drawn from a uniform random
distribution in the interval [—10,10]. For the LNC
protocol, we use a uniform compensation gain ci=c for
all nodes.

3.2. Scenario 1: Stabilization of a Structurally
Unbalanced Network

We first consider a simple 4-node network designed to be
structurally unbalanced. The network consists of a cycle
where three edges are negative (antagonistic) and one is
positive (cooperative). This creates an unbalanced cycle
of length three, guaranteeing instability. The signed
adjacency matrix is:

As=010-110-100-10—-1-10-10

The corresponding signed Laplacian Ls has eigenvalues
approximately equal to {3.236,2.000,0.764,—1.000}. The
presence of the negative eigenvalue AM4=—1 confirms that
the uncompensated system is unstable. For the
uncompensated system, the state trajectories of the four
agents diverge exponentially, as predicted by the
negative eigenvalue, demonstrating the system's
instability.

Next, we apply the LNC protocol with a modest
compensation gain of ¢c=1.5. The new system matrix is
Lcomp=Ls+1.51. The eigenvalues of Lcomp are now
{4.736,3.500,2.264,0.500}. All eigenvalues are now
strictly positive, confirming the theoretical prediction
that the compensated system is stable. For the
compensated system, the states, starting from the same
initial conditions, now quickly converge to the stable
equilibrium at the origin. This simple example clearly
illustrates the core contribution of the LNC protocol: it
effectively shifts the spectrum of the system matrix into
the right half of the complex plane, transforming an
unstable system into a stable one through a purely local
and decentralized mechanism.

3.3. Scenario 2: Performance on a Larger Random
Network
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To assess the performance of LNC on a more complex
topology, we generated a random signed network with
n=50 nodes. The network was created using a Watts-
Strogatz small-world model to ensure connectivity, with
an average node degree of 6. Edge signs were assigned
randomly, with a 30% probability of an edge being
negative. This process is highly likely to create numerous
unbalanced cycles, leading to instability.

The resulting signed Laplacian Ls for one such randomly
generated network had 8 negative eigenvalues, with the
most  negative  being  Amin(Ls)=—2.87.  The
uncompensated system is therefore highly unstable. The
norm of the state vector, [[x(t)]l, for the uncompensated
system grows exponentially as expected.

We then applied the LNC protocol with varying levels of
compensation gain: c¢=1, c¢=3, and c=5. For the
compensated systems, the protocol successfully
stabilizes the network in all cases, causing the state norm
to converge to zero. As predicted by the theory, a larger
compensation gain c¢ results in a faster rate of
convergence. With c=1, the system is stable but
converges slowly. With ¢=3 (a value chosen to be slightly
larger than [Amin(Ls)l), the system becomes stable and
converges robustly. With ¢=5, the convergence is even
more rapid.

3.4. Summary of Results

The simulation results provide strong empirical
validation for our theoretical findings.

1. Stabilization: The LNC protocol successfully
stabilizes networks that are rendered unstable by
structural imbalance. This was demonstrated for both a
small, illustrative network and a larger, complex random
network.

2. Decentralization: The protocol's effectiveness
was achieved using a uniform compensation gain c, a
strategy that requires no communication or knowledge of
the global network topology, affirming its decentralized
nature.

3. Controllability: The rate of convergence to the
stable origin is directly influenced by the magnitude of
the compensation gain c. This provides a simple
mechanism for tuning the system's transient
performance.

The results confirm that Local Node Compensation is a
simple, robust, and scalable method for ensuring stability
in distributed systems on signed graphs.

DISCUSSION AND CONCLUSION

This paper has introduced and analyzed a novel
decentralized  control  strategy, Local  Node
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Compensation (LNC), for ensuring the stability of multi-
agent systems on signed, undirected graphs. The
theoretical analysis, rigorously proven through both
spectral methods and Lyapunov theory, and validated by
numerical simulations, demonstrates that LNC provides
a powerful and practical solution to the fundamental
problem of instability in networks with antagonistic
interactions.

4.1. Interpretation of Findings

The primary contribution of this work is a robust method
for guaranteeing stability in any signed network,
regardless of its structural balance. The core mechanism
of LNC—adding a local self-damping term to each
agent's  dynamics—is  deceptively  simple. Its
effectiveness lies in its ability to ensure the compensated
system matrix, Lcomp=Ls+C, is positive definite. As
shown by the Gershgorin Circle Theorem, the diagonal
compensation term C effectively "pulls" the entire
spectrum of the signed Laplacian into the right half of the
complex plane, guaranteeing that no unstable modes can
exist.

This approach fundamentally alters the system's
objective. While an uncompensated system might be
aimed at achieving bipartite consensus, this is only
possible if the system is stable (i.e., structurally
balanced). For unbalanced networks, this objective is
unattainable as the states diverge. The LNC protocol
prioritizes stability above all else, forcing the system to a
"fail-safe" state at the origin. This trade-off is critical in
many real-world applications where preventing
catastrophic, unbounded behavior is the primary concern.
The work on power system stability, for instance, often
focuses on ensuring that disturbances decay rather than
amplify, a goal analogous to the stability provided by
LNC [9], [10].

The decentralized nature of LNC is its most significant
practical advantage. The protocol does not require any
agent to have knowledge of the global network topology,
the number of agents, or even the signs of non-adjacent
edges. The simplest implementation, a uniform gain c,
requires no information whatsoever. This makes the
protocol highly scalable and robust to changes in the
network, such as the addition or removal of agents and
links, a key consideration in dynamic systems [4], [28].

4.2. Implications and Applications

The ability to guarantee stability in the presence of
antagonistic interactions has broad implications across
numerous fields.

° Social Opinion Dynamics: Models of opinion
formation often include negative influences (distrust,
disagreement). Instability in such models can represent
extreme polarization where opinions grow without

pg. 6


https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE

AND IT INNOVATIONS (IJMCSIT)

bound. LNC could be interpreted as a form of self-
regulation or conviction, where individuals temper their
susceptibility to influence, thus preventing extreme,
unstable opinion dynamics [11].

° Robotic Swarms: In  multi-robot systems,
repulsive forces are often used for collision avoidance or
formation control [24]. These can be modeled as negative
edges. LNC provides a simple mechanism to ensure that
a swarm with both attractive and repulsive interactions
remains stable and does not "fly apart."”

° Distributed Computing and Sensor Networks: In
distributed algorithms, antagonistic interactions could
represent conflicting data or competitive processes.
Ensuring stability is essential for the reliability of the
overall system [7].

4.3. Limitations of the Study

While this work provides a foundational solution for
stability, it is important to acknowledge its limitations,
which also point toward avenues for future research.

1. Undirected Graphs: The analysis presented here
is restricted to undirected graphs, where interactions are
mutual (aij=aji). Many real-world networks, from social
influence to gene regulation, are inherently directed.
Extending the LNC framework to signed digraphs is a
non-trivial but important next step [12].

2. Convergence to Zero: The current LNC protocol
stabilizes the system to the origin, sacrificing any
potential for non-trivial agreement like bipartite

consensus. While this is a valid fail-safe, future work
could explore more sophisticated compensation schemes
that ensure stability while preserving the ability to
achieve bipartite consensus in structurally balanced
subgraphs.

3. System Model: The analysis was performed on
linear, continuous-time, single-integrator dynamics.
Extending the results to agents with more complex
dynamics (e.g., double-integrator, general linear systems)
or considering the effects of communication delays and
asynchronous updates would increase the practical
relevance of the framework [4], [23].

4.4, Future Research Directions

Building on these limitations, several exciting research
directions emerge.

° Adaptive LNC: An adaptive version of the
protocol could be developed where agents dynamically
tune their compensation gain ci based on local
measurements, potentially learning the minimum gain
required for stability to minimize the impact on the
original system dynamics.

https://aimjournals.com/index.php/ijmcsit

° LNC for Directed and Matrix-Weighted
Networks: Extending the LNC concept to handle the
complexities of directed signed graphs [12] and matrix-
weighted networks [19], [20] would significantly
broaden its applicability.

° Preserving Bipartite Consensus: A hybrid
protocol could be designed that activates LNC only when
an instability is detected, or a more nuanced controller
could be developed that stabilizes the system while still
allowing it to converge to the kernel of the signed
Laplacian in the case of balanced networks.

4.5. Concluding Remarks

In conclusion, this paper has introduced the Local Node
Compensation (LNC) protocol, a simple, scalable, and
fully decentralized method for guaranteeing stability in
distributed multi-agent systems on signed networks. By
adding a local self-damping term, LNC robustly
overcomes the instabilities caused by structural
imbalance, a pervasive problem in networks with
antagonistic interactions. The protocol's strength lies in
its simplicity and its ability to be implemented without
any global information, making it highly suitable for
large-scale, dynamic, and complex systems. This work
provides a crucial building block for the design of reliable
and robust control systems in a wide range of applications
where both cooperation and competition are present.
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