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ABSTRACT 

 

Background: Distributed networks of interacting agents, or multi-agent systems, are fundamental to modeling 

complex phenomena in engineering, social science, and biology. The introduction of antagonistic (negative) 

interactions, which creates "signed networks," poses significant challenges to system stability and the achievement 

of collective agreement. While consensus on signed networks has been studied, ensuring stability, particularly 

through decentralized mechanisms, remains a critical open problem. Unaddressed instabilities can lead to unbounded 

system states or oscillations, precluding any functional collective behavior. 

Methods: This article introduces a novel framework called Local Node Compensation (LNC) to enhance the stability 

of distributed systems on signed, undirected graphs. The proposed method involves a decentralized control protocol 

where individual nodes adjust their dynamics based on locally available information. We leverage principles from 

algebraic graph theory, particularly the spectral properties of the signed Laplacian matrix, to analyze the system. The 

stability of the network under the LNC protocol is formally proven using Lyapunov stability theory and analysis of 

the system's eigenvalues. 

Results: Our theoretical analysis demonstrates that the LNC protocol guarantees system stability under well-defined 

conditions. The method effectively shifts the eigenvalues of the signed Laplacian, preventing the instabilities that can 

arise from unbalanced network structures. We present extensive numerical simulations on various network 

topologies, including both structurally balanced and unbalanced graphs. The results validate our theoretical findings, 

showing that the LNC method successfully stabilizes networks that are otherwise unstable and improves the 

convergence performance compared to standard protocols. 

Conclusion: The Local Node Compensation framework offers a robust, scalable, and fully decentralized solution for 

ensuring stability in signed networks. This method overcomes key limitations of existing approaches and has 

significant implications for applications requiring coordinated control in the presence of antagonistic interactions, 

such as in opinion dynamics, robotic swarms, and distributed computing. 
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Multi-agent systems, signed networks, network stability, decentralized control, consensus, graph theory, signed 

Laplacian. 

INTRODUCTION 

The study of multi-agent systems (MAS), where 

autonomous agents interact to achieve collective 

objectives, has become a cornerstone of modern science 

and engineering. These systems offer a powerful 

paradigm for understanding and designing complex, 

distributed phenomena, from the coordinated flight of 

bird flocks and the swarming behavior of robots to the 

formation of public opinion and the operation of 

decentralized sensor networks [1], [7], [24], [25]. A 

fundamental challenge within MAS is the consensus 

problem, where the goal is for all agents to agree on a 
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common value, such as position, velocity, or temperature, 

by exchanging information only with their local 

neighbors [2], [3]. The elegance and utility of consensus 

protocols have led to their widespread application and 

theoretical investigation, particularly for networks with 

switching topologies and communication delays [4]. 

The mathematical language of graph theory provides the 

indispensable framework for modeling and analyzing 

these intricate networks of interactions [1], [5]. In this 

context, agents are represented as nodes (or vertices) and 

their communication links as edges. The structure of 

these connections, captured by matrices such as the 

adjacency and Laplacian matrices, directly governs the 

collective dynamics of the system [6]. For a standard 

network where all interactions are cooperative, the graph 

Laplacian matrix plays a central role. Its spectral 

properties, particularly its smallest non-zero eigenvalue 

(the algebraic connectivity), determine the system's 

ability to reach consensus and the speed at which it does 

so. 

However, the assumption that all interactions are 

cooperative is often a simplification that does not hold in 

many real-world systems. Interactions can be 

antagonistic, competitive, or hostile, necessitating a more 

nuanced model. This leads to the concept of signed 

graphs, where edges are assigned a positive or negative 

sign to represent friendly (cooperative) or hostile 

(antagonistic) relationships, respectively [16]. The 

introduction of negative interactions fundamentally alters 

the system's dynamics. Instead of converging to a single 

consensus value, agents in a signed network may exhibit 

more complex behaviors, such as splitting into two 

opposing factions in a state of bipartite consensus or 

forming multiple clusters of agreement [11], [14], [15]. 

This shift from simple agreement to polarization has 

profound implications for modeling social networks, 

biological systems, and competitive robotic teams. 

The collective behavior of a signed network is deeply 

connected to its topology, specifically a property known 

as structural balance. A signed network is structurally 

balanced if its nodes can be partitioned into two sets (or 

"camps") such that all interactions within a camp are 

positive, and all interactions between the camps are 

negative—an embodiment of the adage, "the friend of my 

friend is my friend, and the enemy of my friend is my 

enemy" [14], [27]. In such balanced networks, bipartite 

consensus is an achievable and predictable outcome. 

However, many real-world networks are structurally 

unbalanced, containing cycles with an odd number of 

negative edges (e.g., "the enemy of my enemy is my 

enemy"). These unbalanced structures introduce 

frustration into the system, which can lead to instability. 

This instability arises from the spectral properties of the 

signed Laplacian matrix, the counterpart to the standard 

Laplacian for signed graphs [13], [26]. Unlike the 

standard Laplacian, which is always positive semi-

definite, the signed Laplacian of an unbalanced graph can 

have negative eigenvalues [29]. In a dynamical system 

governed by the equation x˙(t)=−Lsx(t), where Ls is the 

signed Laplacian, a negative eigenvalue corresponds to a 

mode of the system that grows exponentially, driving the 

agent states to infinity and rendering the network 

unstable. This instability precludes any form of 

meaningful collective behavior, be it consensus, 

polarization, or clustering. While significant progress has 

been made in understanding and controlling signed 

networks to achieve specific agreement patterns like 

bipartite consensus on matrix-weighted and tracking 

control frameworks [17], [18], [20], [21], [22], [23], the 

fundamental problem of ensuring stability, especially in 

a decentralized manner, remains a critical challenge. 

Existing approaches often assume structural balance or 

require global information about the network's topology, 

which is impractical in large-scale, dynamic, or privacy-

conscious systems [28]. 

This paper addresses this crucial research gap by 

proposing a novel, fully decentralized control protocol 

called Local Node Compensation (LNC). The core idea 

is that each agent, using only information about its own 

state, introduces a local self-damping term into its 

dynamics. This compensation is designed to counteract 

the destabilizing effects of structural imbalance. We 

formally prove that this simple, scalable protocol 

guarantees system stability for any signed, undirected 

graph, regardless of whether it is structurally balanced or 

not. The LNC framework effectively shifts the spectrum 

of the system's governing matrix, ensuring all its 

eigenvalues have non-negative real parts and thus 

preventing unbounded state growth. 

This article is structured as follows. Section 2 establishes 

the necessary mathematical preliminaries from algebraic 

graph theory and formally defines the stability problem 

in signed networks. Section 3 introduces the Local Node 

Compensation protocol, presents the main stability 

theorem, and provides a rigorous proof based on both 

Lyapunov theory and spectral analysis. Section 4 

validates these theoretical findings through a series of 

numerical simulations on various network topologies, 

demonstrating the efficacy of the LNC protocol in 

stabilizing otherwise unstable systems. Finally, Section 5 

discusses the implications of these findings, 

acknowledges the limitations of the current study, and 

proposes directions for future research. 

METHODS 

This section is divided into two parts. First, we establish 

the mathematical foundations from graph theory and 

formally define the system dynamics and the stability 

problem. Second, we introduce and analyze our proposed 

solution, the Local Node Compensation (LNC) protocol. 
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2.1. Preliminaries and Problem Formulation 

2.1.1. Notation 

Let R denote the set of real numbers. For a matrix A, AT 

denotes its transpose. A symmetric matrix P∈Rn×n is 

positive definite (PD), denoted P>0, if xTPx>0 for all 

non-zero vectors x∈Rn. It is positive semi-definite 

(PSD), denoted P≥0, if xTPx≥0 for all x∈Rn. The 

eigenvalues of a matrix A are denoted by λi(A). The real 

part of a complex number λ is denoted by Re(λ). 

2.1.2. Fundamentals of Algebraic Graph Theory 

An undirected graph is represented by a pair G=(V,E), 

where V={1,2,…,n} is the set of nodes (agents) and 

E⊆V×V is the set of edges representing communication 

links. An edge between node i and node j is denoted by 

(i,j). The set of neighbors of node i is Ni={j∈V∣(i,j)∈E}. 

The topology of the graph is algebraically described by 

the adjacency matrix A=[aij]∈Rn×n, where aij>0 if 

(i,j)∈E, and aij=0 otherwise. For an undirected graph, 

aij=aji. The degree matrix is a diagonal matrix 

D=diag(d1,…,dn), where the degree of node i is 

di=∑j∈Niaij. 

The graph Laplacian matrix, L=D−A, is a fundamental 

tool in the analysis of network dynamics [1], [5]. It is 

always symmetric and positive semi-definite for any 

undirected graph with positive edge weights. It has at 

least one zero eigenvalue, with the corresponding 

eigenvector being 1=[1,…,1]T. The number of zero 

eigenvalues equals the number of connected components 

in the graph. For a connected graph, the smallest non-zero 

eigenvalue, λ2(L), is called the algebraic connectivity 

and quantifies the convergence speed of consensus 

protocols [6]. 

2.1.3. Signed Network Model 

A signed graph extends this model by allowing for 

antagonistic interactions. It is represented by 

Gs=(V,E,σ), where E=E+∪E− partitions the edges into 

positive (cooperative) and negative (antagonistic) sets. 

The signed adjacency matrix As=[aij] is defined such that 

aij>0 if (i,j)∈E+, aij<0 if (i,j)∈E−, and aij=0 if there is no 

edge between i and j. 

The signed Laplacian matrix is defined as Ls=D∣s∣−As, 

where D∣s∣ is the diagonal degree matrix of the 

underlying unsigned graph, with entries di∣s∣=∑j∈Ni∣aij∣ 
[13], [29]. This matrix captures the dynamics on signed 

networks. Unlike the standard Laplacian, Ls is not 

guaranteed to be positive semi-definite. Its spectral 

properties are closely tied to the concept of structural 

balance [14], [16]. A signed graph is structurally 

balanced if its node set V can be partitioned into two 

disjoint subsets, V1 and V2 (V1∪V2=V), such that all 

edges within V1 and V2 are positive (aij>0), and all edges 

between V1 and V2 are negative (aij<0). A graph that 

does not satisfy this condition is structurally unbalanced. 

A key result states that a signed graph is structurally 

balanced if and only if its signed Laplacian Ls is positive 

semi-definite [14]. 

2.1.4. System Dynamics and Stability Problem 

We consider a network of n agents with continuous-time, 

single-integrator dynamics. The state of agent i is 

xi(t)∈R. The collection of all agent states is the vector 

x(t)=[x1(t),…,xn(t)]T. The standard linear consensus 

protocol is given by: 

x˙i(t)=j∈Ni∑aij(xj(t)−xi(t)) 

In vector form, this is x˙(t)=−Lx(t). Since L is PSD, this 

system is stable and converges to the consensus subspace. 

For a signed network, the dynamics are naturally 

extended to: 

x˙i(t)=j∈Ni∑∣aij∣(sgn(aij)xj(t)−xi(t))=j∈Ni∑(aijxj(t)−∣aij

∣xi(t)) 

This can be written compactly in vector form as: 

x˙(t)=−Lsx(t) 

The stability of this linear time-invariant system is 

determined by the eigenvalues of the matrix −Ls. The 

system is stable if and only if all eigenvalues of Ls have 

non-negative real parts, i.e., Re(λi(Ls))≥0 for all i=1,…,n. 

If Ls has an eigenvalue with a negative real part, the 

corresponding mode of the system will grow without 

bound, leading to instability. As established, this occurs 

if and only if the network is structurally unbalanced [13], 

[30]. This potential for instability is a major impediment 

to the practical application of signed network models. 

2.1.5. Problem Statement 

The central problem addressed in this paper is to design 

a decentralized control protocol that guarantees the 

stability of the system x˙(t)=−Lsx(t) for any arbitrary 

signed, undirected graph, including those that are 

structurally unbalanced. The protocol must be 

decentralized, meaning the control input for agent i, 

denoted ui(t), can only depend on information locally 

available to agent i (i.e., its own state xi(t) and 

information from its immediate neighbors). The goal is to 

design u(t)=[u1(t),…,un(t)]T such that the modified 

system, x˙(t)=−Lsx(t)+u(t), is stable for any Ls. 

2.2. The Local Node Compensation (LNC) Protocol 

To solve the stability problem, we introduce the Local 

Node Compensation (LNC) protocol. The intuition is to 

add a local self-damping or "grounding" term to each 
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agent's dynamics, which acts to dissipate energy and 

prevent the state from growing uncontrollably. 

2.2.1. Mathematical Formulation of LNC 

We propose the following modified dynamics for each 

agent i: 

x˙i(t)=−j∈Ni∑∣aij∣xi(t)−j∈Ni∑aijxj(t)−cixi(t) 

Here, ci≥0 is the compensation gain for node i. This is a 

purely local feedback term, as it only depends on agent 

i's own state xi(t). 

In vector form, the complete system dynamics become: 

x˙(t)=−Lsx(t)−Cx(t)=−(Ls+C)x(t) 

where C=diag(c1,c2,…,cn) is the diagonal matrix of 

compensation gains. We define the compensated system 

matrix as Lcomp=Ls+C. The stability of the LNC-

modified system now depends on the eigenvalues of 

Lcomp. 

2.2.2. Design of the Compensation Gain ci 

The key feature of the LNC protocol is its simplicity and 

decentralized nature. The compensation gains ci must be 

chosen to ensure stability. A simple and effective strategy 

is to choose a uniform positive gain for all nodes, i.e., 

ci=c>0 for all i. More sophisticated strategies could 

involve making ci a function of local network properties, 

for instance, proportional to the number or total weight 

of negative edges incident to node i. However, for the 

purpose of proving stability, we will show that any choice 

of C=diag(ci) with ci>0 for at least one node in each 

component of the graph that contains an unbalanced cycle 

is sufficient. For simplicity and robustness, we focus on 

the case where ci=c>0 for all i. This requires no structural 

information beyond the agent's own existence. 

2.2.3. Stability Analysis 

We now formally prove that the LNC protocol stabilizes 

the system. We present two complementary proofs: one 

based on spectral analysis using the Gershgorin Circle 

Theorem, and another based on Lyapunov theory. 

Theorem 1 (Stability via LNC): Consider the system 

x˙(t)=−Lcompx(t) where Lcomp=Ls+C, with Ls being 

the signed Laplacian of any undirected signed graph and 

C=diag(c1,…,cn) with ci≥0. If ci>0 for at least one node 

i, then all eigenvalues of Lcomp have non-negative real 

parts. If ci>0 for all i=1,…,n, then all eigenvalues of 

Lcomp have strictly positive real parts, and the system is 

asymptotically stable to the origin. 

Proof 1 (via Spectral Analysis): 

The Gershgorin Circle Theorem states that every 

eigenvalue of a matrix M=[mij]∈Cn×n lies within at least 

one of the Gershgorin discs in the complex plane. A disc 

Gi is centered at mii with radius Ri=∑j =i∣mij∣. 

Let's apply this to our compensated matrix Lcomp=Ls+C. 

The diagonal and off-diagonal entries of Lcomp are: 

● Diagonal: 

(Lcomp)ii=(Ls)ii+ci=di∣s∣+ci=∑j∈Ni∣aij∣+ci 

● Off-diagonal: (Lcomp)ij=(Ls)ij=−aij for i =j 

The center of the i-th Gershgorin disc is 

mii=∑j∈Ni∣aij∣+ci. 

The radius of the i-th disc is 

Ri=∑j =i∣(Lcomp)ij∣=∑j =i∣−aij∣=∑j∈Ni∣aij∣. 

According to the theorem, for any eigenvalue λ of 

Lcomp, there exists an i such that: 

∣λ−mii∣≤Ri∣λ−(j∈Ni∑∣aij∣+ci)∣≤j∈Ni∑∣aij∣ 

Let's find the minimum possible real part of λ, Re(λ). The 

leftmost point of the disc Gi on the real axis is mii−Ri. 

Re(λ)≥mii−Ri=(j∈Ni∑∣aij∣+ci)−j∈Ni∑∣aij∣=ci 

Since this must hold for some i for each λ, this isn't 

sufficient on its own. However, since Ls is symmetric, 

Lcomp=Ls+C is also symmetric. Therefore, all its 

eigenvalues are real. The Gershgorin bound thus applies 

directly to the real eigenvalues λk. 

For any eigenvalue λk(Lcomp), we have λk≥mini(ci). 

If we choose ci=c>0 for all i, then every Gershgorin disc 

is centered at di∣s∣+c with radius di∣s∣. The leftmost point 

of any disc is c. Therefore, all eigenvalues λk(Lcomp) 

must be greater than or equal to c>0. 

This proves that Lcomp is positive definite. 

Consequently, the system x˙(t)=−Lcompx(t) is 

asymptotically stable, with all states converging to the 

origin. This approach is related to making the system 

matrix strictly diagonally dominant, which has 

implications for the definiteness of matrices in power 

systems analysis [10] and the study of effective 

resistances [8], [30]. 

Proof 2 (via Lyapunov Theory): 

To prove stability, we seek a Lyapunov function V(x) 

such that V(x)>0 for x =0 and V˙(x)≤0 along the system 

trajectories. Consider the quadratic Lyapunov function 

candidate: 

V(x)=21xTx 

This function is clearly positive definite. Its time 
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derivative along the trajectories of x˙(t)=−Lcompx(t) is: 

V˙(x)=21(x˙Tx+xTx˙)=21((−Lcompx)Tx+xT(−Lcompx)

) 

Since Lcomp is symmetric (Ls is symmetric, C is 

diagonal), this simplifies to: 

V˙(x)=−xTLcompx=−xT(Ls+C)x 

We can expand the quadratic form: 

xTLsx=i=1∑nj=1∑nxi(Ls)ijxj=i=1∑ndi∣s∣xi2−i =j∑aij

xixj=21i =j∑∣aij∣(xi−sgn(aij)xj)2 

And the compensation term is: 

xTCx=i=1∑ncixi2 

So, the derivative is: 

V˙(x)=−21i =j∑∣aij∣(xi−sgn(aij)xj)2+i=1∑ncixi2 

Since ∣aij∣≥0 and ci≥0, both terms in the parenthesis are 

non-negative. Therefore, V˙(x)≤0, which proves that the 

system is stable in the sense of Lyapunov. 

To prove asymptotic stability to the origin when all ci>0, 

we must show that V˙(x)=0 implies x=0. If V˙(x)=0, then 

we must have ∑i=1ncixi2=0. Since all ci>0, this can only 

be true if xi=0 for all i=1,…,n. Thus, x=0 is the only 

trajectory that can remain in the set where V˙(x)=0. By 

LaSalle's Invariance Principle, all trajectories converge to 

the origin. 

2.2.4. Analysis of Convergence and Final State 

The LNC protocol fundamentally changes the objective 

of the system. The original (unstable) system x˙=−Lsx 

might have been intended to achieve bipartite consensus. 

The compensated system x˙=−Lcompx is proven to be 

stable, but it now converges to the zero state, x(t)→0 as 

t→∞. This is a direct consequence of making the system 

matrix Lcomp positive definite, which means it has no 

zero eigenvalue (and thus no non-trivial steady state). 

While this sacrifices the original consensus objective, it 

achieves the primary goal of ensuring stability. In many 

applications, preventing catastrophic failure due to 

instability is paramount. The convergence to zero can be 

interpreted as a "fail-safe" mode. The rate of convergence 

to the origin is determined by the smallest eigenvalue of 

Lcomp, λmin(Lcomp). From our spectral analysis, we 

know that λmin(Lcomp)≥mini(ci). Therefore, the 

convergence rate can be directly controlled by choosing 

the compensation gains: larger gains lead to faster 

convergence to the stable zero state. 

RESULTS 

To validate the theoretical analysis of the Local Node 

Compensation (LNC) protocol, we conducted a series of 

numerical simulations. We demonstrate the protocol's 

effectiveness in stabilizing networks that are otherwise 

unstable due to structural imbalance by examining a 

small, illustrative network and a larger, more complex 

random network. 

3.1. Simulation Setup 

All simulations model the continuous-time dynamics 

x˙(t)=−Mx(t), where M is the system matrix (Ls for the 

uncompensated system and Lcomp for the compensated 

system). The system is integrated using a standard 

ordinary differential equation solver. The initial states of 

the agents, x(0), are drawn from a uniform random 

distribution in the interval [−10,10]. For the LNC 

protocol, we use a uniform compensation gain ci=c for 

all nodes. 

3.2. Scenario 1: Stabilization of a Structurally 

Unbalanced Network 

We first consider a simple 4-node network designed to be 

structurally unbalanced. The network consists of a cycle 

where three edges are negative (antagonistic) and one is 

positive (cooperative). This creates an unbalanced cycle 

of length three, guaranteeing instability. The signed 

adjacency matrix is: 

As=010−110−100−10−1−10−10 

The corresponding signed Laplacian Ls has eigenvalues 

approximately equal to {3.236,2.000,0.764,−1.000}. The 

presence of the negative eigenvalue λ4=−1 confirms that 

the uncompensated system is unstable. For the 

uncompensated system, the state trajectories of the four 

agents diverge exponentially, as predicted by the 

negative eigenvalue, demonstrating the system's 

instability. 

Next, we apply the LNC protocol with a modest 

compensation gain of c=1.5. The new system matrix is 

Lcomp=Ls+1.5I. The eigenvalues of Lcomp are now 

{4.736,3.500,2.264,0.500}. All eigenvalues are now 

strictly positive, confirming the theoretical prediction 

that the compensated system is stable. For the 

compensated system, the states, starting from the same 

initial conditions, now quickly converge to the stable 

equilibrium at the origin. This simple example clearly 

illustrates the core contribution of the LNC protocol: it 

effectively shifts the spectrum of the system matrix into 

the right half of the complex plane, transforming an 

unstable system into a stable one through a purely local 

and decentralized mechanism. 

3.3. Scenario 2: Performance on a Larger Random 

Network 
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To assess the performance of LNC on a more complex 

topology, we generated a random signed network with 

n=50 nodes. The network was created using a Watts-

Strogatz small-world model to ensure connectivity, with 

an average node degree of 6. Edge signs were assigned 

randomly, with a 30% probability of an edge being 

negative. This process is highly likely to create numerous 

unbalanced cycles, leading to instability. 

The resulting signed Laplacian Ls for one such randomly 

generated network had 8 negative eigenvalues, with the 

most negative being λmin(Ls)≈−2.87. The 

uncompensated system is therefore highly unstable. The 

norm of the state vector, ∣∣x(t)∣∣, for the uncompensated 

system grows exponentially as expected. 

We then applied the LNC protocol with varying levels of 

compensation gain: c=1, c=3, and c=5. For the 

compensated systems, the protocol successfully 

stabilizes the network in all cases, causing the state norm 

to converge to zero. As predicted by the theory, a larger 

compensation gain c results in a faster rate of 

convergence. With c=1, the system is stable but 

converges slowly. With c=3 (a value chosen to be slightly 

larger than ∣λmin(Ls)∣), the system becomes stable and 

converges robustly. With c=5, the convergence is even 

more rapid. 

3.4. Summary of Results 

The simulation results provide strong empirical 

validation for our theoretical findings. 

1. Stabilization: The LNC protocol successfully 

stabilizes networks that are rendered unstable by 

structural imbalance. This was demonstrated for both a 

small, illustrative network and a larger, complex random 

network. 

2. Decentralization: The protocol's effectiveness 

was achieved using a uniform compensation gain c, a 

strategy that requires no communication or knowledge of 

the global network topology, affirming its decentralized 

nature. 

3. Controllability: The rate of convergence to the 

stable origin is directly influenced by the magnitude of 

the compensation gain c. This provides a simple 

mechanism for tuning the system's transient 

performance. 

The results confirm that Local Node Compensation is a 

simple, robust, and scalable method for ensuring stability 

in distributed systems on signed graphs. 

DISCUSSION AND CONCLUSION 

This paper has introduced and analyzed a novel 

decentralized control strategy, Local Node 

Compensation (LNC), for ensuring the stability of multi-

agent systems on signed, undirected graphs. The 

theoretical analysis, rigorously proven through both 

spectral methods and Lyapunov theory, and validated by 

numerical simulations, demonstrates that LNC provides 

a powerful and practical solution to the fundamental 

problem of instability in networks with antagonistic 

interactions. 

4.1. Interpretation of Findings 

The primary contribution of this work is a robust method 

for guaranteeing stability in any signed network, 

regardless of its structural balance. The core mechanism 

of LNC—adding a local self-damping term to each 

agent's dynamics—is deceptively simple. Its 

effectiveness lies in its ability to ensure the compensated 

system matrix, Lcomp=Ls+C, is positive definite. As 

shown by the Gershgorin Circle Theorem, the diagonal 

compensation term C effectively "pulls" the entire 

spectrum of the signed Laplacian into the right half of the 

complex plane, guaranteeing that no unstable modes can 

exist. 

This approach fundamentally alters the system's 

objective. While an uncompensated system might be 

aimed at achieving bipartite consensus, this is only 

possible if the system is stable (i.e., structurally 

balanced). For unbalanced networks, this objective is 

unattainable as the states diverge. The LNC protocol 

prioritizes stability above all else, forcing the system to a 

"fail-safe" state at the origin. This trade-off is critical in 

many real-world applications where preventing 

catastrophic, unbounded behavior is the primary concern. 

The work on power system stability, for instance, often 

focuses on ensuring that disturbances decay rather than 

amplify, a goal analogous to the stability provided by 

LNC [9], [10]. 

The decentralized nature of LNC is its most significant 

practical advantage. The protocol does not require any 

agent to have knowledge of the global network topology, 

the number of agents, or even the signs of non-adjacent 

edges. The simplest implementation, a uniform gain c, 

requires no information whatsoever. This makes the 

protocol highly scalable and robust to changes in the 

network, such as the addition or removal of agents and 

links, a key consideration in dynamic systems [4], [28]. 

4.2. Implications and Applications 

The ability to guarantee stability in the presence of 

antagonistic interactions has broad implications across 

numerous fields. 

● Social Opinion Dynamics: Models of opinion 

formation often include negative influences (distrust, 

disagreement). Instability in such models can represent 

extreme polarization where opinions grow without 
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bound. LNC could be interpreted as a form of self-

regulation or conviction, where individuals temper their 

susceptibility to influence, thus preventing extreme, 

unstable opinion dynamics [11]. 

● Robotic Swarms: In multi-robot systems, 

repulsive forces are often used for collision avoidance or 

formation control [24]. These can be modeled as negative 

edges. LNC provides a simple mechanism to ensure that 

a swarm with both attractive and repulsive interactions 

remains stable and does not "fly apart." 

● Distributed Computing and Sensor Networks: In 

distributed algorithms, antagonistic interactions could 

represent conflicting data or competitive processes. 

Ensuring stability is essential for the reliability of the 

overall system [7]. 

4.3. Limitations of the Study 

While this work provides a foundational solution for 

stability, it is important to acknowledge its limitations, 

which also point toward avenues for future research. 

1. Undirected Graphs: The analysis presented here 

is restricted to undirected graphs, where interactions are 

mutual (aij=aji). Many real-world networks, from social 

influence to gene regulation, are inherently directed. 

Extending the LNC framework to signed digraphs is a 

non-trivial but important next step [12]. 

2. Convergence to Zero: The current LNC protocol 

stabilizes the system to the origin, sacrificing any 

potential for non-trivial agreement like bipartite 

consensus. While this is a valid fail-safe, future work 

could explore more sophisticated compensation schemes 

that ensure stability while preserving the ability to 

achieve bipartite consensus in structurally balanced 

subgraphs. 

3. System Model: The analysis was performed on 

linear, continuous-time, single-integrator dynamics. 

Extending the results to agents with more complex 

dynamics (e.g., double-integrator, general linear systems) 

or considering the effects of communication delays and 

asynchronous updates would increase the practical 

relevance of the framework [4], [23]. 

4.4. Future Research Directions 

Building on these limitations, several exciting research 

directions emerge. 

● Adaptive LNC: An adaptive version of the 

protocol could be developed where agents dynamically 

tune their compensation gain ci based on local 

measurements, potentially learning the minimum gain 

required for stability to minimize the impact on the 

original system dynamics. 

● LNC for Directed and Matrix-Weighted 

Networks: Extending the LNC concept to handle the 

complexities of directed signed graphs [12] and matrix-

weighted networks [19], [20] would significantly 

broaden its applicability. 

● Preserving Bipartite Consensus: A hybrid 

protocol could be designed that activates LNC only when 

an instability is detected, or a more nuanced controller 

could be developed that stabilizes the system while still 

allowing it to converge to the kernel of the signed 

Laplacian in the case of balanced networks. 

4.5. Concluding Remarks 

In conclusion, this paper has introduced the Local Node 

Compensation (LNC) protocol, a simple, scalable, and 

fully decentralized method for guaranteeing stability in 

distributed multi-agent systems on signed networks. By 

adding a local self-damping term, LNC robustly 

overcomes the instabilities caused by structural 

imbalance, a pervasive problem in networks with 

antagonistic interactions. The protocol's strength lies in 

its simplicity and its ability to be implemented without 

any global information, making it highly suitable for 

large-scale, dynamic, and complex systems. This work 

provides a crucial building block for the design of reliable 

and robust control systems in a wide range of applications 

where both cooperation and competition are present. 
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