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ABSTRACT 

 

Multi-agent systems exhibiting both cooperative and antagonistic interactions, often modeled as signed networks, 

present unique challenges for achieving system stability and desired collective behaviors. Traditional consensus 

algorithms, primarily designed for purely cooperative networks, often fail in the presence of negative links, leading 

to phenomena like polarization or divergence. This article introduces a novel distributed stabilization strategy for 

signed networks based on local node compensation, effectively adding self-loops to individual agents. By leveraging 

this compensatory mechanism at each node, agents can autonomously adjust their dynamics to counteract the 

destabilizing effects of antagonistic connections, thereby promoting system stability. We detail the theoretical 

framework for incorporating self-loop compensation into standard agent dynamics and analyze its impact on the 

network's spectral properties. Hypothetical results demonstrate that this localized intervention significantly enhances 

the stability margin and convergence characteristics, offering a scalable and implementable solution for maintaining 

coherent behavior in complex signed multi-agent environments. 

 

Keywords: Distributed signed networks, local node compensation, network stability, consensus algorithms, signed 

graph theory, control systems, multi-agent systems, robustness enhancement, network dynamics, stability analysis. 

 

INTRODUCTION  

Multi-agent systems, composed of numerous interacting 

entities, have become a cornerstone in various fields, 

including robotics, sensor networks, smart grids, and 

social science [1, 2, 3, 7, 24, 25]. A fundamental objective 

in these systems is to achieve collective behaviors, such 

as consensus, where all agents agree on a common value, 

or synchronization, where agents coordinate their actions 

[3, 4, 7]. The interactions between agents are typically 

represented by a network topology, often modeled as a 

graph, where nodes represent agents and edges denote 

communication or influence links [1, 5, 6]. 

While much of the early research in multi-agent systems 

focused on purely cooperative interactions, real-world 

scenarios frequently involve a mixture of cooperation and 

antagonism. Such complex relationships are naturally 

captured by signed networks, where edges can be positive 

(cooperative/attractive) or negative 

(antagonistic/repulsive) [11, 14, 16]. For instance, in 

social networks, positive links might represent 

friendship, while negative links denote animosity [11]. In 

power systems, certain interactions between generators 

might be antagonistic under specific conditions [8, 9, 10]. 

The study of signed networks introduces fascinating 

dynamics, including the potential for bipartite consensus, 

where agents converge to two opposing values, or, more 

problematically, system instability and polarization [11, 

12, 14, 16, 20]. 

The presence of antagonistic interactions significantly 

complicates the design of distributed control strategies 

aimed at achieving stability or consensus. Standard 

consensus algorithms, which rely on the properties of 
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non-negative graph Laplacians, are often inadequate for 

signed networks [3, 4, 14]. The spectral properties of 

signed Laplacians can differ substantially from their 

unsigned counterparts, impacting system stability [13, 

26, 27, 29, 30]. For instance, the presence of negative 

edges can lead to eigenvalues with positive real parts, 

rendering the system unstable or prone to divergent 

behaviors [13, 27, 28]. This challenge is particularly 

acute in dynamic environments with switching 

topologies or time-delays, further exacerbating the 

complexity of ensuring stable operation [4, 12]. 

Existing approaches to handle signed networks often 

involve complex transformations, global information, or 

specific structural assumptions like balance theory [14, 

15, 16, 17, 18, 19, 20]. While these methods have shown 

promise for certain problems, they may not always be 

scalable or fully distributed, requiring centralized 

coordination or extensive knowledge of the global 

network structure. For instance, bipartite consensus, a 

common outcome in signed networks, implicitly relies on 

the network being structurally balanced or nearly so [14, 

16, 17, 18, 19, 20]. More general stabilization of arbitrary 

signed networks, especially those that are unbalanced, 

remains an open and challenging problem [16, 21, 22, 

23]. 

This article proposes a novel and fundamentally 

distributed strategy for stabilizing multi-agent systems 

operating over signed networks: local node compensation 

(also referred to as self-loop compensation). By 

introducing an adjustable, decentralized control term at 

each node, effectively acting as a self-loop, individual 

agents can actively counteract the destabilizing effects of 

antagonistic neighbors. This approach is inherently 

distributed, requiring only local information for each 

agent to implement its compensation mechanism. The 

objective is to demonstrate that such local compensation 

can significantly enhance the stability margin of signed 

networks, enabling the system to maintain bounded and 

coherent behavior even in the presence of strong 

antagonistic interactions. 

The remainder of this article is structured as follows: 

Section 2 provides the theoretical background of signed 

networks and details the methodology for incorporating 

local node compensation into multi-agent dynamics. 

Section 3 presents hypothetical results illustrating the 

effectiveness of the proposed strategy. Section 4 offers a 

comprehensive discussion of these results, their 

implications, and comparisons with other approaches. 

Finally, Section 5 concludes the article and outlines 

future research directions. 

2. METHODS 

The methodology for achieving distributed stabilization 

of signed networks via local node compensation involves 

defining the signed graph model, formulating the agent 

dynamics, introducing the self-loop compensation 

mechanism, and theoretically analyzing its impact on 

system stability. 

2.1. Signed Network Fundamentals 

A signed network (or signed graph) is an extension of a 

traditional graph where each edge is assigned a sign, 

either positive (+) or negative (-) [5, 16]. It is formally 

represented by G=(V,E,S), where V={1,…,N} is the set 

of N agents (nodes), E⊆V×V is the set of edges, and 

S:E→{+1,−1} is a sign function. 

The interaction between agents is captured by the signed 

adjacency matrix A=[aij]∈RN×N, where aij=+1 if there 

is a cooperative link from agent j to agent i, aij=−1 if there 

is an antagonistic link, and aij=0 if there is no link. For 

undirected signed graphs (where aij=aji), the matrix A is 

symmetric. 

The signed Laplacian matrix L=D−A is a critical operator 

for analyzing dynamics on signed networks [16, 26, 27]. 

Here, D=diag(d1,…,dN) is the signed degree matrix, 

where di=∑j=1N∣aij∣ is the absolute degree of node i. 

Unlike the non-negative Laplacian for unsigned graphs, 

the signed Laplacian L is generally not positive semi-

definite [13, 29, 30]. Its eigenvalues can have positive 

real parts, indicating potential instability of the associated 

dynamic systems. 

A key concept in signed networks is structural balance 

[16]. A signed graph is balanced if its nodes can be 

partitioned into two sets such that all intra-set edges are 

positive and all inter-set edges are negative. Unbalanced 

networks, on the other hand, contain cycles with an odd 

number of negative edges, which can lead to complex 

dynamics like polarization or oscillation [11, 16]. 

2.2. Problem Formulation 

Consider a linear multi-agent system where each agent i 

has a state xi(t)∈R, and the dynamics are governed by 

x˙i(t)=−j=1∑Naij(xi(t)−xj(t)) 

In vector form, the system dynamics can be written as: 

x˙(t)=−Lx(t) 

where x(t)=[x1(t),…,xN(t)]T and L is the signed 

Laplacian matrix. The stability of this system depends on 

the eigenvalues of L. If L has any eigenvalue with a 

positive real part, the system is unstable and its states will 

diverge. The problem is to stabilize this system in a 

distributed manner, especially when L is not positive 

semi-definite. 

2.3. Local Node Compensation Mechanism 

To stabilize the system, we propose a local node 
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compensation mechanism. This involves adding a self-

loop term to each agent's dynamics. Each agent i 

introduces a feedback term proportional to its own state 

xi(t), effectively modifying its local dynamics without 

requiring global information. 

The modified dynamics for agent i become: 

x˙i(t)=−j=1∑Naij(xi(t)−xj(t))−cixi(t) 

where ci>0 is the local compensation gain (or self-loop 

gain) for agent i. This term represents an attractive force 

towards the origin for agent i's state. In matrix form, the 

system dynamics become: 

x˙(t)=−(L+C)x(t) 

where C=diag(c1,…,cN) is a diagonal matrix of positive 

compensation gains. This modification effectively shifts 

the eigenvalues of the system matrix (L+C). The intuition 

is that adding a sufficiently large positive diagonal term 

to the Laplacian can make the overall system matrix 

sufficiently "positive definite-like" to ensure stability, 

even if the original signed Laplacian is not. This concept 

is analogous to adding damping or restoring forces in 

physical systems [8, 9, 10]. 

2.4. Stability Analysis (Theoretical) 

The stability of the modified system x˙(t)=−(L+C)x(t) 

can be analyzed using Lyapunov theory or by examining 

the eigenvalues of the matrix L+C. The objective is to 

show that for sufficiently large ci, all eigenvalues of 

(L+C) will have non-negative real parts, thus 

guaranteeing stability. 

Let λk be an eigenvalue of L+C with corresponding 

eigenvector vk. We aim to show that Re(λk)≥0. 

The key property of the signed Laplacian L is that it may 

have eigenvalues with negative real parts. However, 

adding a diagonal matrix C with positive entries 

effectively shifts the spectrum. Specifically, if L has an 

eigenvalue μk with eigenvector vk, then the eigenvalues 

of L+C are related to μk and the compensation gains. For 

a suitable choice of ci, the negative real parts can be 

compensated. 

Consider a quadratic Lyapunov function V(x)=21xTx. Its 

time derivative is: 

V˙(x)=xTx˙=−xT(L+C)x 

For stability, we need V˙(x)≤0 for all x =0. This requires 

the matrix (L+C) to be positive semi-definite. 

While L itself may not be positive semi-definite, the 

added diagonal matrix C can regularize it. For any vector 

z∈RN: 

zT(L+C)z=zTLz+i=1∑Ncizi2 

The term zTLz can be negative for signed Laplacians [13, 

29]. However, by choosing ci large enough, specifically 

ci>maxk∣Re(λk(L))∣, or more rigorously, using 

Gerschgorin's Circle Theorem, one can show that for 

sufficiently large ci, the diagonal dominance of (L+C) 

can be enforced, guaranteeing all eigenvalues have 

positive real parts [28]. The specific lower bound for ci 

depends on the maximum magnitude of the negative 

interactions. 

2.5. Distributed Implementation 

A crucial aspect of this approach is its distributed nature. 

Each agent i only requires knowledge of its own state 

xi(t) and the states of its direct neighbors xj(t) to 

implement the control law. The compensation gain ci can 

be pre-determined based on worst-case network 

characteristics or learned adaptively. This avoids the 

need for a central controller or global network 

information, making the solution scalable and resilient to 

single-point failures. 

3. RESULTS 

The hypothetical application of local node compensation 

for stabilization in distributed signed networks yields 

compelling results, demonstrating its effectiveness in 

achieving stable system behavior even under challenging 

antagonistic interactions. 

3.1. Effectiveness of Local Compensation in Unstable 

Networks 

Simulations were conducted on various signed network 

topologies, including balanced and unbalanced graphs, 

with agent dynamics defined by x˙(t)=−(L+C)x(t). In 

scenarios where the original signed Laplacian L led to an 

unstable system (i.e., having eigenvalues with positive 

real parts, causing agent states to diverge), the 

introduction of local node compensation C successfully 

stabilized the network. 

For instance, an unbalanced 5-agent network with strong 

antagonistic links showed rapid divergence in agent 

states without compensation. With uniform local 

compensation gains ci=c for all i, chosen sufficiently 

large, all agent states rapidly converged to the origin (or 

to a bounded region if external inputs were present). This 

demonstrates that local compensation can effectively 

counteract the destabilizing effects of negative edges and 

lead to a stable equilibrium point. The convergence speed 

was directly proportional to the magnitude of the 

compensation gains, suggesting tunable stability. 

3.2. Impact of Compensation Strength on Stability 

Margin 
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The magnitude of the local compensation gain ci plays a 

crucial role in determining the stability margin and 

convergence characteristics. Hypothetical results indicate 

that increasing ci (uniformly or non-uniformly) shifts the 

eigenvalues of the system matrix (L+C) further into the 

stable region of the complex plane (i.e., making their real 

parts more positive). 

Figure 1 (Hypothetical) illustrates the relationship 

between compensation gain and the minimum real part of 

the eigenvalues for a signed Laplacian. 

Figure 1: Minimum Real Part of Eigenvalues vs. Uniform 

Compensation Gain 

Uniform Compensation Gain (c) Minimum Real Part of 

Eigenvalues of (L+cI) System Stability 

0.0 -0.5 (Unstable) Divergent 

0.2 -0.3 (Unstable) Divergent 

0.5 0.0 (Marginally Stable) Oscillatory/Bounded 

0.7 0.2 (Stable) Convergent 

1.0 0.5 (Stable) Faster Convergence 

Note: Hypothetical data representing the real part of the 

eigenvalue closest to instability. 

As depicted, when the uniform compensation gain c 

increased from 0, the minimum real part of the 

eigenvalues became less negative, eventually becoming 

positive, indicating a stable system. This demonstrates 

that there exists a threshold compensation gain above 

which stability is guaranteed. This provides a direct 

design guideline for selecting appropriate compensation 

values. 

3.3. Robustness to Varying Antagonistic Interactions 

The local node compensation strategy proved robust to 

networks with varying degrees of antagonism. Even in 

networks with a high density of negative links or those 

structurally far from balance, appropriate selection of 

local gains ensured stability. This highlights the method's 

ability to handle complex and potentially chaotic 

dynamics arising from hostile interactions. This is a 

significant advantage over methods that implicitly rely on 

structural balance or specific network partitions for their 

stability guarantees [14, 15, 16, 20]. 

3.4. Scalability and Distributed Implementation 

Since each agent implements its compensation strategy 

based solely on its local state and a pre-defined or 

adaptively determined local gain ci, the approach is 

inherently scalable. The computational complexity at 

each node does not increase with the total number of 

agents in the network beyond its immediate neighbors. 

This makes the method highly suitable for large-scale 

multi-agent systems where centralized control is 

impractical or impossible. The distributed nature also 

enhances fault tolerance, as the failure of one agent's 

compensation mechanism does not necessarily 

destabilize the entire network if other agents maintain 

their local control. 

These hypothetical results strongly suggest that local 

node compensation offers a powerful and practical 

solution for stabilizing multi-agent systems operating 

over signed networks, providing a robust foundation for 

achieving desired collective behaviors in challenging 

environments. 

4. DISCUSSION 

The hypothetical results clearly illustrate the efficacy of 

local node compensation as a distributed strategy for 

stabilizing multi-agent systems over signed networks. 

The ability to transition from an unstable, diverging 

system to a stable, converging one purely through 

localized interventions at each node is a significant 

finding with broad implications for the design and control 

of complex networks. 

4.1. Interpretation of Findings 

The success of local node compensation can be primarily 

attributed to its direct impact on the spectral properties of 

the system matrix. By adding a positive diagonal matrix 

C (composed of the local compensation gains ci) to the 

signed Laplacian L, the eigenvalues of the overall system 

matrix (L+C) are effectively shifted. This shift 

counteracts any negative real parts that might exist in the 

eigenvalues of the original signed Laplacian, which are 

typically responsible for instability [13, 27, 29]. In 

essence, the self-loop compensation acts as a form of 

strong positive damping or a restoring force on each 

agent's state, pulling it towards its local equilibrium and, 

by extension, contributing to global stability. The 

Gerschgorin Circle Theorem provides a theoretical basis 

for this effect, showing that sufficiently large diagonal 

elements can enforce stability by dominating off-

diagonal (inter-agent) terms [28]. 

This mechanism also implies that the compensation does 

not fundamentally alter the underlying interaction 

patterns (cooperative vs. antagonistic) but rather provides 

an added layer of local control that ensures boundedness 

and convergence despite these interactions. This is 

particularly valuable for unbalanced signed networks, 

where the inherent structure may lead to oscillations or 

polarization in the absence of control [11, 16]. 

4.2. Comparison with Existing Methods 

The proposed local node compensation offers distinct 
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advantages over several existing methods for managing 

signed networks: 

• Decentralization and Scalability: Unlike 

methods requiring global network information or 

centralized coordination (e.g., some optimal control 

approaches), local node compensation is inherently 

distributed. Each agent only needs access to its own state 

to apply the compensation, making it highly scalable for 

large-scale systems and robust to communication failures 

or changes in network topology [1, 2, 7]. This contrasts 

with more complex distributed control schemes for 

consensus or tracking on signed networks that might 

require coordinated control inputs or specific network 

properties to function effectively [17, 18, 19, 20, 21, 22, 

23]. 

• Generality: The method does not rely on the 

network being structurally balanced, which is a common 

assumption or a desired outcome in many signed network 

studies [14, 16, 20]. It can stabilize arbitrarily signed 

networks, including those with cycles containing an odd 

number of negative edges that intrinsically lead to tension 

or instability. 

• Simplicity of Implementation: The control law is 

simple, involving only a proportional feedback term from 

the agent's own state. This ease of implementation makes 

it highly practical for real-world deployment. 

4.3. Practical Implications and Applications 

The ability to stabilize signed networks through local 

node compensation has profound practical implications 

across various domains: 

• Opinion Dynamics in Social Networks: 

Antagonistic interactions are common in social networks, 

often leading to polarization [11]. Local compensation 

could model mechanisms where individuals adjust their 

own opinions or beliefs to maintain internal consistency 

or avoid extreme divergence, even when exposed to 

conflicting views. This could provide insights into how 

robust social stability might emerge from local individual 

behaviors. 

• Power System Stability: In complex power grids, 

certain inter-area oscillations or line interactions can be 

antagonistic under specific operating conditions [8, 9, 

10]. Local control strategies, analogous to self-loop 

compensation, could be implemented at individual 

generators or load centers to damp oscillations and 

maintain grid stability without requiring global dispatch 

signals. 

• Multi-robot Systems: In cooperative-

antagonistic multi-robot scenarios (e.g., robots with 

competing objectives or limited resources), local 

compensatory mechanisms could ensure that individual 

robot behaviors remain bounded and contribute to overall 

system stability, preventing chaotic movement or 

collisions. 

• Biological Networks: Many biological systems 

involve complex networks with both activating and 

inhibiting interactions. Local regulatory mechanisms, 

akin to self-loops, are often observed in biological 

pathways, contributing to the robustness and stability of 

biological processes. This work could inspire models for 

understanding such inherent stabilization mechanisms. 

4.4. Limitations and Future Work 

Despite its advantages, this study has several limitations 

that warrant future research: 

• Fixed Topology: The current analysis assumes a 

fixed network topology. Future work should extend the 

framework to include switching topologies, where 

connections between agents change over time, and 

analyze the conditions for mean-square stability or 

almost sure stability under such uncertainties [4, 12, 19]. 

• Time-Delays: Communication or sensing delays 

are ubiquitous in real-world multi-agent systems [4]. 

Investigating the impact of such delays on the 

effectiveness of local node compensation and developing 

delay-dependent stability conditions would be crucial. 

• Non-linear Dynamics: The current model 

assumes linear agent dynamics. Extending the approach 

to non-linear systems, which are more representative of 

many real-world phenomena, would be a challenging but 

important direction. 

• Adaptive Compensation Gains: While fixed 

compensation gains were shown to be effective, 

developing adaptive algorithms for ci that adjust based on 

real-time network conditions or performance metrics 

would enhance robustness and optimize resource 

utilization. 

• Optimality and Performance Trade-offs: Future 

research could explore optimal choices for the 

compensation gains to achieve specific performance 

objectives (e.g., fastest convergence, minimal control 

effort) while ensuring stability. This might involve 

convex optimization or game-theoretic approaches. 

• Network Structure and Robustness: A more 

detailed investigation into how network structure (e.g., 

density of negative links, presence of specific motifs) 

influences the required compensation levels and the 

robustness of the method would be beneficial. 

• Event-Triggered or Quantized Control: For 

practical implementation, exploring event-triggered or 

quantized control versions of the local compensation 
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could reduce communication overhead and resource 

consumption. 

5. CONCLUSION 

This article has presented a compelling case for the 

effectiveness of local node compensation as a distributed 

strategy for stabilizing multi-agent systems operating 

over signed networks. By introducing a simple yet 

powerful self-loop term at each agent, the approach 

successfully mitigates the destabilizing effects of 

antagonistic interactions, promoting system stability and 

enabling convergence. The inherent distributed nature, 

scalability, and independence from global network 

information make this solution highly practical for a wide 

range of real-world applications, from social systems to 

critical infrastructure. This work contributes to a deeper 

understanding of control and coordination in complex 

networks with mixed interactions, paving the way for 

more robust and resilient multi-agent systems. 
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