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ABSTRACT 

 

Accurately forecasting the popularity of online information is critical for optimizing content delivery, 

recommendation systems, and network resource allocation. This paper introduces a novel framework that leverages 

temporal persistence patterns and graph neural networks (GNNs) to improve the prediction of information popularity. 

By modeling user-content interactions as dynamic graphs and incorporating historical popularity trends, our approach 

captures both structural and temporal dependencies. Extensive experiments on real-world social and content-sharing 

platforms demonstrate that the proposed method significantly outperforms traditional forecasting models in terms of 

accuracy and robustness. The results highlight the potential of combining graph-based learning with temporal 

analysis for intelligent information propagation modeling. 

 

Keywords: Information popularity forecasting, graph neural networks, temporal persistence, dynamic graphs, user-

content interaction, content recommendation, predictive modeling, social networks, deep learning, information 

diffusion. 

 

INTRODUCTION  

The rapid proliferation of online social networks and 

digital platforms has transformed how information is 

disseminated and consumed. Understanding and 

predicting the popularity of information, whether it be 

news articles, social media posts, or viral videos, has 

become a critical area of research with significant 

implications for marketing, public health, content 

recommendation, and even crisis management [1]. 

Information diffusion often manifests as cascades, where 

an initial piece of content spreads through a network as 

individuals adopt and re-share it [2, 3]. The ability to 

accurately forecast the trajectory and ultimate reach of 

these information cascades is invaluable, yet it presents 

considerable challenges due to the complex interplay of 

content attributes, user behaviors, and underlying 

network structures [4, 5, 6]. 

Early research in information popularity prediction 

primarily focused on identifying influential users and key 

features of content or cascades [7, 8, 9]. These 

approaches often relied on statistical models or machine 

learning techniques applied to handcrafted features such 

as initial propagation speed, user engagement metrics, or 

network topology characteristics [10, 11, 12, 13, 14, 15]. 

While these methods provided valuable insights, they 

often struggled to capture the intricate temporal dynamics 

and the inherent graph-like structure of information flow 

in social networks. The temporal evolution of a cascade, 

including its initial surge and subsequent "persistence" or 

sustained activity over time, is crucial for accurate long-

term prediction [13, 17, 18, 19]. Models like self-exciting 

point processes have been employed to capture these 

temporal dependencies, treating information cascades as 

events that trigger subsequent events [19, 20, 23]. 

More recently, the emergence of deep learning, 

particularly Graph Neural Networks (GNNs), has opened 
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new avenues for modeling complex relational data. 

Information cascades, by their very nature, form directed 

acyclic graphs where nodes represent users or events and 

edges represent the propagation of information. GNNs, 

especially Graph Convolutional Networks (GCNs), are 

adept at learning representations from graph-structured 

data by aggregating information from neighboring nodes 

[26]. This makes them particularly well-suited for 

analyzing information diffusion paths and predicting 

future popularity [24, 25]. However, effectively 

integrating the "persistence" aspect—the sustained 

influence and temporal patterns beyond initial bursts—

into GCN frameworks remains an underexplored 

challenge. Existing GCN-based models for diffusion 

prediction often focus heavily on structural aggregation 

at a given snapshot or combine GCNs with Recurrent 

Neural Networks (RNNs) to handle sequences of events 

[27, 28, 29]. While effective for capturing immediate 

temporal dependencies, they may not fully leverage the 

long-term, non-linear persistence characteristics of 

information spread. 

This article proposes a novel approach that augments 

Graph Neural Networks with a dedicated mechanism to 

capture information persistence for enhanced popularity 

forecasting. By integrating features that reflect the 

sustained activity and decaying influence of information 

over time directly into the graph learning process, our 

model aims to provide a more comprehensive 

understanding and prediction of information popularity. 

The remainder of this article is structured as follows: 

Section 2 details the proposed methodology, including 

the graph construction, persistence augmentation, and the 

GCN architecture. Section 3 presents the experimental 

results and comparative analysis. Section 4 discusses the 

findings, implications, limitations, and future research 

directions. 

METHODS 

Problem Formulation and Graph Representation 

Information popularity prediction can be framed as 

forecasting the future engagement (e.g., number of 

retweets, likes, shares, or views) an item of information 

will receive within a specific timeframe, given its initial 

propagation history. We represent an information 

cascade as a directed graph G=(V,E), where V is the set 

of users involved in the cascade, and E is the set of 

directed edges representing the flow of information from 

one user to another (e.g., a retweet from user u to user v). 

Each node v∈V can be associated with features such as 

user attributes (e.g., follower count, activity level) and 

temporal features (e.g., time of interaction). The 

information item itself can also have content-based 

features (e.g., text, image, video characteristics) [10, 12, 

22]. 

Given an observed partial cascade up to time T, the goal 

is to predict its total size or future popularity at a later 

time T′>T. The challenge lies in effectively encoding 

both the structural information (who influences whom) 

and the temporal dynamics (when these influences occur 

and how long they last) [18]. 

Persistence Augmentation 

To capture the "persistence" of information, we introduce 

a set of features that quantify the sustained engagement 

and decay patterns of a cascade. Unlike models that rely 

solely on the raw sequence of events or simple 

aggregation of initial activity, our persistence 

augmentation aims to provide the GCN with a richer 

understanding of how long and how strongly information 

resonates within the network. These features are 

incorporated as node-level or edge-level attributes in the 

graph representation. Examples of persistence features 

include: 

• Temporal Decay Rates: For each node (user 

interaction), we calculate a decay rate based on the time 

elapsed since the initial post and the time interval 

between successive interactions. This helps the GCN 

understand how "old" or "fresh" a piece of information is 

for a specific propagation path. 

• Activity Windows: We define multiple time 

windows (e.g., 1 hour, 6 hours, 24 hours) and compute 

the number of interactions within each window for 

different parts of the cascade. This provides a multi-scale 

view of activity [13]. 

• Engagement Ratios: Ratios like retweets-per-

follower or comments-per-view can indicate the intensity 

of engagement and potential for continued spread, 

reflecting the intrinsic "stickiness" of the content [21]. 

• Recency of Active Paths: For any given node in 

the cascade graph, we can compute the recency of the 

most recent interaction along the path leading to it. This 

highlights which parts of the cascade are still "alive" and 

propagating. 

These persistence features are integrated into the initial 

feature vector of each node (hv(0)) alongside traditional 

content and user features. This enriches the input to the 

Graph Convolutional Layers, allowing the network to 

implicitly learn how persistence affects future popularity. 

Graph Convolutional Network Architecture 

Our model employs a multi-layer Graph Convolutional 

Network (GCN) to learn node embeddings that capture 

both local neighborhood information and global cascade 

structure, enhanced by persistence features. The core 

operation of a GCN layer is to aggregate feature vectors 

from a node's neighbors and transform them, generating 

a new representation for the node. 
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The propagation rule for a single GCN layer is defined 

as: 

H(l+1)=σ(D~−21A~D~−21H(l)W(l)) 

where: 

• H(l) is the matrix of node features at layer l, 

with H(0) being the initial feature matrix 

including persistence features. 

• A~=A+IN is the adjacency matrix A of the 

graph with added self-loops (IN is the identity 

matrix). 

• D~ is the diagonal degree matrix of A~. 

• W(l) is the weight matrix for layer l, which is 

learned during training. 

• σ is an activation function (e.g., ReLU). 

In our architecture, we use multiple GCN layers to allow 

each node to aggregate information from increasingly 

distant neighbors, effectively capturing the global 

structure of the information cascade [26]. The output of 

the final GCN layer provides a rich, low-dimensional 

embedding for each node in the cascade graph. 

Prediction Layer 

After obtaining the node embeddings from the GCN, 

these embeddings are pooled to form a single, fixed-size 

representation of the entire information cascade. Various 

pooling strategies can be employed, such as sum pooling, 

average pooling, or attention-based pooling, which 

assigns different weights to node embeddings based on 

their importance [28, 29]. For instance, a simple sum 

pooling can be represented as: 

Hcascade=v∈V∑Hv(L) 

where Hv(L) is the final embedding for node v from the 

last GCN layer L. 

This cascade-level representation (Hcascade) is then fed 

into a fully connected neural network (MLP) with one or 

more hidden layers, followed by an output layer. For 

regression tasks (predicting the exact number of future 

engagements), the output layer will have a single neuron 

with a linear activation. For classification tasks (e.g., 

predicting if popularity will exceed a certain threshold), 

a sigmoid or softmax activation would be used. 

The model is trained using standard optimization 

techniques like Adam, minimizing a suitable loss 

function such as Mean Squared Error (MSE) for 

regression or Binary Cross-Entropy for classification. 

Experimental Setup 

Datasets 

To evaluate the proposed model, we utilized two public 

datasets commonly used in information cascade 

prediction research: 

1. Twitter Dataset: A collection of retweet cascades 

from Twitter, encompassing diverse topics. Each cascade 

includes the retweet graph, timestamps of interactions, 

and user metadata. The task is to predict the total number 

of retweets within a 24-hour or 7-day window after the 

initial post, given the first few hours of observation (e.g., 

first 1-2 hours) [4, 5, 6]. 

2. Weibo Dataset: A microblogging dataset from 

Sina Weibo, similar to Twitter, providing cascades of 

reposts. This dataset offers rich content features 

alongside structural and temporal information [9]. 

Baseline Models 

We compared our Persistence Augmented GCN (PA-

GCN) against several state-of-the-art and representative 

baseline models: 

• Feature-Based Regression (FBR): A traditional 

approach using hand-crafted features (e.g., initial spread 

rate, number of unique users, user influence scores) fed 

into a linear regression or gradient boosting model [14, 

15]. 

• SEISMIC: A self-exciting point process model 

that captures temporal dynamics by modeling how each 

event in a cascade triggers subsequent events [19]. 

• DeepCas: A deep learning model that leverages 

a Recurrent Neural Network (RNN) to process sequences 

of cascade events and predicts future popularity [26]. 

• Topological RNN (TRNN): A model that 

combines topological features with an RNN to predict 

diffusion [24]. 

• CasSeqGCN: A recent GCN-based model that 

combines network structure and temporal sequence for 

prediction [27]. 

Evaluation Metrics 

For popularity prediction, which is typically a regression 

task, we used the following metrics: 

• Mean Absolute Error (MAE): Average absolute 

difference between predicted and actual values. 

• Root Mean Squared Error (RMSE): Measures 

the square root of the average of the squared errors, 

penalizing larger errors more heavily. 
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• R-squared (R2): Indicates the proportion of the 

variance in the dependent variable that is predictable 

from the independent variables. 

RESULTS 

Our experimental evaluations demonstrate the significant 

performance gains achieved by the proposed Persistence 

Augmented GCN (PA-GCN) compared to the baseline 

models across both Twitter and Weibo datasets. The 

inclusion of persistence features proved crucial in 

enhancing the model's ability to capture the long-term 

popularity dynamics of information cascades. 

Performance Comparison 

Table 1 summarizes the performance of PA-GCN and 

baseline models on the Twitter and Weibo datasets, 

focusing on predicting the total cascade size within a 7-

day window. 

Table 1: Performance Comparison of PA-GCN with Baseline Models (Lower MAE/RMSE, Higher R2 are 

better) 

Model Twitter 

(MAE) 

Twitter 

(RMSE) 

Twitter 

(R2) 

Weibo 

(MAE) 

Weibo 

(RMSE) 

Weibo 

(R2) 

FBR 125.6 289.1 0.52 88.2 195.3 0.48 

SEISMIC 102.3 234.5 0.61 75.1 170.8 0.55 

DeepCas 98.7 221.9 0.65 71.4 162.7 0.58 

TRNN 95.1 215.2 0.67 69.8 158.9 0.60 

CasSeqGCN 91.2 208.7 0.69 67.5 153.1 0.63 

PA-GCN 82.9 188.4 0.75 61.8 139.5 0.69 

As shown in Table 1, PA-GCN consistently outperforms 

all baseline models across all evaluation metrics on both 

datasets. Specifically, PA-GCN achieved a 9.1% 

reduction in MAE and a 9.7% reduction in RMSE 

compared to the next best model, CasSeqGCN, on the 

Twitter dataset. Similar improvements were observed on 

the Weibo dataset, with a 8.4% reduction in MAE and a 

8.9% reduction in RMSE over CasSeqGCN. The higher 

R2 values indicate that our model explains a greater 

proportion of the variance in information popularity, 

suggesting a more robust predictive capability. 

Ablation Study of Persistence Features 

To validate the impact of persistence features, we 

conducted an ablation study on the PA-GCN model, 

removing the persistence features and comparing its 

performance against the full model. 

Table 2: Ablation Study of Persistence Features (Twitter Dataset) 

 

Model MAE RMSE R2 

PA-GCN (w/o Pers.) 96.5 218.0 0.66 

PA-GCN (Full) 82.9 188.4 0.75 

Table 2 clearly demonstrates that the inclusion of 

persistence features significantly contributes to the 

superior performance of PA-GCN. Without these 

features, the model's performance drops considerably, 

approaching that of other GCN-based methods like 

CasSeqGCN. This highlights the effectiveness of 

explicitly encoding the temporal decay, multi-scale 

activity, and engagement ratios within the graph 

representation. 

Analysis of Convergence and Efficiency 

The training process for PA-GCN exhibited stable 

convergence, typically within 50-70 epochs for both 

datasets. The computational overhead introduced by the 

persistence feature calculation was minimal and 

outweighed by the gains in predictive accuracy. The 

GCN architecture itself, while more complex than simple 

feature-based models, is designed for efficient parallel 
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processing on GPUs, making it suitable for large-scale 

social network data. 

DISCUSSION 

The results presented unequivocally demonstrate the 

effectiveness of leveraging persistence features within a 

Graph Convolutional Network framework for 

information popularity forecasting. Our proposed PA-

GCN model consistently outperformed established 

baselines, including advanced temporal models and other 

GCN-based approaches, across diverse real-world social 

media datasets. This superior performance can be 

attributed to the model's ability to holistically capture 

both the structural propagation paths and the nuanced 

temporal decay and sustained engagement patterns 

inherent in information cascades. 

Traditional feature-based methods, while providing 

initial insights, often oversimplify the complex dynamics 

of information spread by relying on aggregate statistics 

that may not fully represent the micro-level interactions 

and their temporal evolution [14, 15]. Point process 

models like SEISMIC [19] excel at modeling sequential 

events but may not fully leverage the topological 

structure of the underlying social network. Deep learning 

models, such as DeepCas [26] and TRNN [24], have 

made strides by using RNNs to process cascade 

sequences, but they can struggle to integrate the non-

sequential, graph-level interactions effectively. 

Our approach addresses these limitations by augmenting 

the graph representation with specifically engineered 

persistence features. These features, such as temporal 

decay rates and activity window summaries, provide 

explicit signals to the GCN about how information 

"lives" and "dies" over time, beyond just its initial spread. 

By incorporating these directly into the node feature 

vectors, the GCN layers can learn to propagate and 

aggregate information that includes rich temporal 

context. This allows the model to differentiate between 

cascades that experience a rapid, short-lived burst of 

popularity and those that exhibit sustained, long-term 

engagement, leading to more accurate long-term 

popularity predictions. 

The ablation study confirmed the critical role of these 

persistence features. The substantial drop in performance 

when these features were removed underscores that the 

gains are not merely from using a GCN but from the 

synergistic combination of the graph learning capabilities 

with an intelligent encoding of temporal persistence. This 

suggests that for dynamic graph problems like 

information diffusion, enriching the graph's static or 

semi-static features with indicators of dynamic behavior 

is highly beneficial. 

Despite its strengths, the PA-GCN model has certain 

limitations. The engineered persistence features require 

careful domain knowledge and may not be universally 

optimal across all types of information or social 

networks. While effective, they still represent an explicit 

feature engineering step rather than a fully end-to-end 

learning of persistence directly from raw temporal 

signals. Furthermore, the model's interpretability, while 

better than some end-to-end black-box deep learning 

models, could be further enhanced to understand which 

specific persistence features contribute most to the 

prediction for a given cascade. 

Future research could explore several exciting directions. 

First, integrating more advanced temporal graph neural 

networks or dynamic graph embedding techniques could 

allow for an even more intrinsic learning of persistence 

without explicit feature engineering. This might involve 

incorporating attention mechanisms that weigh temporal 

edges differently or using temporal convolution layers. 

Second, exploring the application of PA-GCN to other 

types of information diffusion, such as news propagation 

or meme spread, on different platforms could validate its 

generalizability. Finally, investigating methods to 

provide uncertainty estimates alongside popularity 

predictions would be valuable for practical applications, 

enabling more robust decision-making in areas like 

targeted advertising or virality assessment. 

In conclusion, this work demonstrates that enhancing 

Graph Convolutional Networks with carefully designed 

persistence features significantly improves the accuracy 

of information popularity forecasting. By bridging the 

gap between static graph structure and dynamic temporal 

activity, the proposed PA-GCN offers a powerful and 

effective framework for understanding and predicting the 

complex phenomenon of information diffusion in online 

social networks. 
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