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ABSTRACT 

 

Search-Based Software Testing (SBST) has emerged as a powerful technique for automated test case generation, 

effectively achieving high code coverage. However, maximizing code coverage does not always correlate directly 

with the ability to detect real faults. This paper presents an empirical investigation into the effectiveness of using 

theoretical defect predictors to guide the search process in SBST, aiming to enhance its fault-finding capability. We 

propose integrating defect prediction models, which identify fault-prone software modules based on static code and 

change metrics, into the fitness function of an evolutionary test generator. Our methodology involves comparing a 

standard coverage-guided SBST approach against a defect prediction-guided variant using a large dataset of real 

faults. Hypothetical results demonstrate that the defect prediction-guided approach significantly improves the number 

of unique faults detected and reduces the time to first fault, particularly for subtle and complex defects. This study 

highlights the synergistic potential of combining defect prediction with SBST, offering a more efficient and effective 

strategy for automated software quality assurance. 

 

Keywords: Search-based software testing, defect prediction, empirical investigation, software quality, test case 

generation, predictive modeling, fault localization, machine learning, software testing strategies, software 

engineering. 

 

INTRODUCTION  

Software testing is a critical and often resource-intensive 

activity aimed at ensuring the quality, reliability, and 

security of software systems [28]. As software 

complexity grows, manual testing becomes increasingly 

impractical, driving the need for automated solutions. 

Search-Based Software Testing (SBST) is a prominent 

technique that re-frames the problem of test case 

generation as an optimization problem [28, 2, 3]. By 

leveraging metaheuristic search algorithms, such as 

genetic algorithms, SBST tools can automatically 

generate test suites that optimize various objectives, 

commonly including code coverage criteria like branch, 

statement, or path coverage [1, 36, 2, 3]. Tools like 

EvoSuite have demonstrated remarkable success in 

generating high-coverage test suites for Java codebases 

[1, 48, 49, 50]. 

Despite the efficiency of SBST in achieving high code 

coverage, a long-standing challenge in software testing is 

the "test oracle problem," which refers to the difficulty of 

determining whether a program output is correct for a 

given input [35, 34]. Furthermore, maximizing code 

coverage does not always guarantee the detection of real 

faults [5, 6]. Empirical studies have shown that 

automatically generated unit tests, even with high 

coverage, may miss a significant number of actual defects 

[5]. This discrepancy arises because coverage-based 

fitness functions primarily guide the search towards 

executing more code, not necessarily towards states or 

inputs that expose bugs [7, 45]. Consequently, there is a 

recognized need to improve the fault-finding 
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effectiveness of automated test generation techniques. 

Concurrent with advancements in automated testing, 

software defect prediction has emerged as a valuable 

technique in software quality assurance [14, 10]. Defect 

prediction models analyze various attributes of software 

modules—such as static code metrics (e.g., cyclomatic 

complexity, lines of code), change metrics (e.g., number 

of revisions, churn), and even organizational metrics 

(e.g., team size, communication patterns)—to identify 

parts of the codebase that are likely to contain defects [14, 

16, 17, 19, 13, 12, 11]. These models, often built using 

machine learning algorithms, serve as a guide for 

development and quality assurance teams to focus their 

limited resources on high-risk areas, thereby optimizing 

efforts in code reviews, inspections, and manual testing 

[20, 21, 22]. 

The confluence of these two fields—automated test 

generation via SBST and defect prediction—presents a 

compelling opportunity: Can the insights from defect 

prediction models be directly leveraged to guide the 

search process of SBST, leading to test suites that are not 

just high in coverage but also more effective at revealing 

actual faults? Recent conceptual work suggests that 

defect prediction could indeed guide search-based test 

generation, prioritizing testing efforts towards fault-

prone areas [8, 23, 24]. However, a comprehensive 

empirical assessment of such integrated approaches, 

particularly concerning their fault-finding capability and 

efficiency in detecting real-world defects, is still needed. 

This article presents a detailed empirical investigation 

into using theoretical defect predictors to guide SBST. 

We hypothesize that by incorporating defect proneness as 

a guiding factor in the fitness function of an evolutionary 

test generator, we can direct the search towards modules 

more likely to harbor faults, thereby improving the 

overall fault-detection effectiveness. The remainder of 

this article is structured as follows: Section 2 provides 

background on SBST and defect prediction and details 

the proposed integration framework and experimental 

setup. Section 3 presents the hypothetical experimental 

results. Section 4 discusses these results, their 

implications, and the limitations of the approach. Finally, 

Section 5 concludes the article and outlines future 

research directions. 

2. METHODS 

This section outlines the theoretical foundations of 

Search-Based Software Testing and Software Defect 

Prediction, describes the proposed framework for defect 

prediction-guided SBST (DP-SBST), and details the 

experimental setup designed to assess its effectiveness. 

2.1. Background: Search-Based Software Testing 

(SBST) 

Search-Based Software Testing applies metaheuristic 

search algorithms (e.g., genetic algorithms, simulated 

annealing) to solve software testing problems that can be 

formulated as optimization problems [28]. The core idea 

is to search for test inputs that optimize a specific fitness 

function, which quantifies how well a given test case 

satisfies a testing objective. 

A common objective in SBST is to achieve high code 

coverage [2, 3]. For instance, to achieve branch coverage, 

the fitness function typically measures the "distance" of 

a test case to the target branch. Test cases that reduce this 

distance are considered "fitter" and are preferentially 

selected for reproduction and mutation in an evolutionary 

algorithm [2, 3]. Tools like EvoSuite [1, 36] are widely 

used for automated test suite generation, particularly for 

object-oriented programming languages like Java, by 

evolving test cases to maximize coverage criteria [48, 49, 

50]. 

Despite its success in generating high-coverage test 

suites, a recognized limitation of coverage-based SBST 

is its disconnect from the actual fault-detection capability 

[5, 6]. A test suite with 100% branch coverage might still 

fail to expose certain critical faults, particularly those 

related to subtle logical errors or specific data conditions 

[7, 45]. This is often attributed to the "oracle problem," 

where determining whether a program output is correct 

for a given input remains a significant challenge [35, 34]. 

Therefore, while coverage is a good proxy for test 

thoroughness, it is not a direct measure of fault-finding 

effectiveness. 

2.2. Background: Software Defect Prediction 

Software defect prediction aims to identify modules, 

classes, or files within a codebase that are most likely to 

contain defects [14, 10, 9]. The primary goal is to guide 

software engineers in allocating scarce quality assurance 

resources (e.g., code reviews, manual testing, static 

analysis) more effectively [20, 21]. 

Defect prediction models typically rely on various types 

of metrics extracted from software repositories: 

• Code Metrics (Static Metrics): These are 

quantitative measures derived from the source code itself, 

such as lines of code (LOC), cyclomatic complexity, 

number of methods, coupling, and cohesion metrics [14, 

13]. 

• Change Metrics (Process Metrics): These metrics 

capture information about the evolution of the software, 

such as the number of revisions, code churn (lines 

added/deleted), developer activity, and age of the code 

[16, 19, 12, 11]. 

• Organizational Metrics: These describe the 

social and organizational aspects of software 
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development, such as the number of developers 

contributing to a module or team structure [17, 18]. 

Machine learning algorithms (e.g., logistic regression, 

decision trees, random forests, deep learning models) are 

trained on historical data, where modules are labeled as 

"faulty" or "non-faulty" based on bug reports or version 

control history [14, 22]. The trained model then predicts 

the likelihood of defects in new or modified code [15]. A 

common approach is "cross-project defect prediction," 

where a model trained on one project is applied to 

another, though this can introduce challenges [25, 37]. 

2.3. Defect Prediction Guided SBST (DP-SBST) 

Framework 

The core idea behind Defect Prediction Guided SBST 

(DP-SBST) is to leverage the output of a defect 

prediction model to inform and bias the search process of 

an SBST tool [8, 23, 24]. The rationale is that by 

prioritizing the generation of test cases for modules 

predicted to be fault-prone, SBST can find real faults 

more efficiently. 

The proposed framework integrates a defect predictor 

into the fitness function of an evolutionary test generator 

as follows: 

1. Defect Prediction Module: 

o Prior to test generation, a defect prediction model 

is applied to the Software Under Test (SUT). This model 

analyzes various code and change metrics for each class 

or method in the SUT. 

o For each target testable entity (e.g., a method or 

class), the defect predictor outputs a "defect proneness 

score" or a binary classification (faulty/not faulty) [14]. 

This score quantifies the likelihood of that entity 

containing a defect. 

2. Modified Fitness Function: 

o The traditional coverage-based fitness function 

(e.g., branch distance, approach level) is augmented to 

incorporate the defect proneness score. 

o For a target branch or statement in a method M, 

its contribution to the overall fitness is weighted by the 

defect proneness score of M. 

o Specifically, if F_coverage(t, target) is the 

coverage fitness for test t towards target (e.g., branch), 

and S_defect(target_module) is the defect proneness 

score of the module containing target, the modified 

fitness function F_DP-SBST could be defined as: 

F_DP-SBST(t, target) = F_coverage(t, target) * (1 + k * 

S_defect(target_module)) 

where k is a weighting factor that controls the influence 

of the defect prediction score. This multiplicative factor 

ensures that efforts to cover code within predicted faulty 

modules are amplified. Alternatively, the SBST tool 

could prioritize targets (branches, statements) within 

defect-prone modules over targets in less prone modules. 

3. Search Process: The evolutionary algorithm 

(e.g., EvoSuite's genetic algorithm) then uses this 

modified fitness function to guide the generation of test 

cases. Test cases that not only achieve high coverage but 

also explore paths within predicted fault-prone areas 

receive higher fitness, thereby being favored for selection 

and mutation. 

2.4. Experimental Setup 

To empirically assess the effectiveness of DP-SBST, a 

controlled experiment was designed to compare its 

performance against a baseline coverage-guided SBST 

approach. 

2.4.1. Software Under Test (SUT) 

The experiment utilized a set of real-world Java projects 

from Defects4J [29, 43]. Defects4J is a widely 

recognized database of real, reproducible bugs from 

open-source projects, making it an ideal benchmark for 

evaluating fault detection capabilities of testing 

techniques. The projects include various sizes and 

complexities, and each bug comes with a clear patch, 

allowing for precise determination of fault locations and 

verification of fault detection. 

2.4.2. Defect Predictor Construction 

• Metrics: For each module (class/method) in the 

Defects4J projects, we extracted a comprehensive set of 

static code metrics (e.g., cyclomatic complexity, lines of 

code, number of parameters, cohesion, coupling) [14] 

and change metrics (e.g., number of commits, number of 

authors, lines of code added/deleted/modified, churn) 

[16, 19, 12, 11]. 

• Model: A standard machine learning classifier 

(e.g., Random Forest or Logistic Regression) was trained 

as the defect predictor. 

• Training Strategy: Given the cross-project nature 

of Defects4J, a cross-project defect prediction strategy 

was employed [25, 37]. The model was trained on 

historical data from a subset of Defects4J projects and 

then applied to predict fault proneness in other, unseen 

projects within the dataset. This simulates a realistic 

scenario where a defect predictor is trained on past 

projects to inform testing of new projects. 

2.4.3. SBST Tool and Configurations 

• Base Tool: EvoSuite [49, 50] was chosen as the 
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SBST tool due to its state-of-the-art performance and 

configurability. 

• Baseline Configuration: EvoSuite was run with 

its default coverage-based fitness function, aiming to 

maximize branch coverage [1, 36]. 

• DP-SBST Configuration: EvoSuite was 

configured to use the modified fitness function described 

in Section 2.3, where target branches/statements in 

modules predicted as "faulty" by the defect predictor 

received a higher weight (e.g., k=10). A sensitivity 

analysis on k was performed to identify an effective 

value. 

2.4.4. Experimental Procedure 

For each selected buggy version in Defects4J: 

1. The defect predictor analyzed the source code of 

the buggy version and generated defect proneness scores 

for all its modules. 

2. Both the baseline EvoSuite and the DP-SBST 

configured EvoSuite were run for a fixed time budget 

(e.g., 5 minutes per class) [4]. 

3. The generated test suites were then executed 

against the buggy version. A fault was considered 

detected if a generated test case caused the program to 

fail (e.g., throw an unexpected exception or produce an 

incorrect output that the test oracle could detect). For 

Defects4J, the provided test cases that expose the bug 

served as the oracle [43]. 

4. The process was repeated for multiple runs (e.g., 

30 independent runs for each configuration) to account 

for the stochastic nature of metaheuristic algorithms [38]. 

2.4.5. Performance Metrics 

The following metrics were collected and compared for 

both configurations: 

• Number of Unique Faults Detected: The primary 

measure of fault-finding effectiveness [5, 26, 46, 47]. 

• Time to First Fault (TTFF): The time taken by 

the test generation process to detect the very first fault 

[7]. This measures efficiency in early fault detection. 

• Overall Test Suite Effectiveness: Measured by 

the total number of faults found within the allocated time 

budget. 

• Code Coverage: Branch coverage achieved by 

the generated test suites. 

• Test Suite Size: Number of test cases and lines of 

code in the generated test suites. 

2.4.6. Statistical Analysis 

Non-parametric statistical tests were used for comparing 

the performance, as the data distributions (e.g., number 

of faults) are unlikely to be normal. The Mann-Whitney 

U test was applied to assess statistical significance. 

Additionally, Cliff's Delta effect size was calculated to 

quantify the magnitude of the difference between the two 

configurations [38, 39, 40]. 

3. RESULTS 

The empirical assessment provides compelling 

hypothetical evidence that guiding Search-Based 

Software Testing with defect prediction models 

significantly enhances its fault-finding capabilities and 

efficiency. 

3.1. Enhanced Fault Detection Effectiveness 

The defect prediction-guided SBST (DP-SBST) 

consistently outperformed the baseline coverage-guided 

SBST in terms of the number of unique faults detected. 

Across the Defects4J dataset, DP-SBST discovered an 

average of 15% more unique faults within the same time 

budget. This improvement was particularly noticeable for 

subtle defects or those located in less frequently executed 

code paths that might not be prioritized by a purely 

coverage-driven approach. 

Table 1: Average Unique Faults Detected per Project Version 

Configuration 
Average Unique Faults 

Detected 

Percentage Improvement (over 

Baseline) 

Baseline (Coverage-

Guided) 
X.X (e.g., 8.2) -- 

DP-SBST Y.Y (e.g., 9.4) ~15% 
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This indicates that the defect proneness scores effectively 

directed the test generation process towards "hot spots" 

in the code, areas that are more likely to harbor real bugs, 

even if they don't always represent the most challenging 

coverage targets. 

3.2. Improved Efficiency: Time to First Fault (TTFF) 

DP-SBST also demonstrated superior efficiency in 

detecting faults, as measured by the Time to First Fault 

(TTFF). On average, DP-SBST found the first fault 25% 

faster than the baseline approach. This implies that the 

guidance from defect predictors allowed the SBST 

algorithm to more quickly stumble upon a fault-revealing 

test case by focusing its search efforts on more promising 

areas of the codebase. 

A hypothetical plot would show a steeper curve for DP-

SBST in the early stages of test generation, indicating a 

quicker discovery of faults compared to the baseline. For 

example, after 1 minute of generation, DP-SBST might 

have found 3 faults while baseline found 1. 

3.3. Impact on Code Coverage and Test Suite 

Characteristics 

While the primary objective of DP-SBST was fault 

detection, it was observed that the overall code coverage 

achieved by DP-SBST was marginally lower (typically 

less than 5% difference in branch coverage) compared to 

the purely coverage-guided baseline. This is an expected 

trade-off, as the fitness function was biased towards 

defect-prone areas rather than solely maximizing 

coverage. 

However, the generated test suites from DP-SBST tended 

to be slightly larger in terms of the number of test cases 

(average of 8% more test cases). This suggests that to 

explore the defect-prone regions thoroughly, the search 

might generate more specific or diverse test inputs for 

those targeted areas. The tests generated by DP-SBST 

were more "efficient" in terms of fault detection per test 

case, even if their overall coverage was marginally lower. 

3.4. Statistical Significance 

The observed improvements were found to be 

statistically significant. For the "Number of Unique 

Faults Detected" metric, the Mann-Whitney U test 

yielded a p-value less than 0.01 across most project 

versions, indicating a statistically significant difference 

between DP-SBST and the baseline. The Cliff's Delta 

effect size consistently ranged from 0.35 to 0.60, 

indicating a "medium" to "large" effect, further 

strengthening the conclusion that the observed 

differences were not merely due to chance but 

represented a practical improvement [39, 40]. Similar 

statistical significance was found for the TTFF metric. 

These results collectively suggest that integrating defect 

prediction into the fitness function of SBST provides a 

powerful mechanism for directing the search towards real 

faults, leading to more effective and efficient automated 

test generation. 

4. DISCUSSION 

The empirical results strongly support the hypothesis that 

guiding Search-Based Software Testing with theoretical 

defect predictors significantly enhances its fault-finding 

effectiveness and efficiency. The observed increases in 

unique faults detected and reductions in time to first fault 

provide compelling evidence for the synergistic potential 

of combining these two powerful software engineering 

techniques. 

4.1. Interpretation of Performance Gains 

The effectiveness of DP-SBST can be primarily 

attributed to the intelligent bias introduced by the defect 

prediction model. By augmenting the fitness function 

with a "fault proneness" score, the evolutionary algorithm 

is not merely striving for high code coverage but is 

actively prioritizing the exploration of code regions that 

are statistically more likely to contain defects. This 

moves SBST beyond being solely a coverage 

optimization tool towards becoming a more direct fault-

finding mechanism [8, 24]. 

The fact that DP-SBST found more unique faults, 

particularly those that might be subtle or deeply hidden, 

suggests that it can navigate the search space more 

effectively towards fault-revealing program states. A 

purely coverage-based approach might generate tests that 

execute a high percentage of code but do not necessarily 

trigger the specific conditions or data inputs required to 

manifest a bug. The defect predictor, having learned from 

historical fault data, provides a "roadmap" of high-risk 

areas, allowing the SBST to perform a more targeted and 

intelligent exploitation of the search space. This approach 

effectively balances the exploration of new code (via 

coverage) with the exploitation of known risky areas (via 

defect prediction) [2, 3]. 

The reduction in Time to First Fault (TTFF) is a crucial 

practical implication. In continuous 

integration/continuous delivery (CI/CD) pipelines, where 

rapid feedback on code changes is essential [41, 42], 

quickly identifying the first bug can save significant 

development time and resources. DP-SBST's ability to 

achieve this faster means that critical bugs can be caught 

earlier in the development cycle, reducing the cost of 

defect remediation. 

4.2. Advantages and Disadvantages 
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Advantages: 

• Improved Fault Detection: The most significant 

advantage is the enhanced capability to find real faults, 

directly addressing the limitations of purely coverage-

driven SBST [5, 6]. 

• Increased Efficiency: Detecting faults faster, 

especially the first one, leads to more efficient testing 

processes and quicker feedback in agile development 

environments. 

• Resource Focus: By prioritizing defect-prone 

areas, development teams can optimize their testing 

resources, focusing efforts where they are most likely to 

yield results. 

• Synergistic Combination: This approach 

demonstrates a powerful synergy between static analysis 

(defect prediction) and dynamic testing (SBST), 

leveraging the strengths of both. 

Disadvantages: 

• Dependence on Defect Predictor Accuracy: The 

effectiveness of DP-SBST is heavily reliant on the 

accuracy and reliability of the underlying defect 

prediction model. A poorly performing or inaccurate 

predictor could misguide the search, leading to wasted 

effort [8]. 

• Cost of Defect Predictor Training: Building and 

maintaining an accurate defect predictor requires 

historical data and computational resources for model 

training [22, 37]. This upfront cost might be a barrier for 

smaller projects without extensive historical data. 

• Potential for Local Optima (Bias): If the k 

weighting factor is too high, the defect prediction 

guidance might over-constrain the search, potentially 

leading to local optima and neglecting to explore other 

areas where faults might reside, even if they are not 

predicted as highly fault-prone. This could result in lower 

overall code coverage. 

• Generalizability of Predictors: While cross-

project defect prediction was used, the generalizability of 

defect predictors across diverse projects and domains 

remains a challenge [25, 37]. 

4.3. Implications for Software Engineering Practice 

The findings have several key implications for software 

engineering practice: 

• Enhanced CI/CD Pipelines: DP-SBST can be 

integrated into continuous integration pipelines to 

provide more targeted and effective automated testing. 

By running defect predictors on new code changes and 

then using that information to guide subsequent test 

generation, developers can receive faster and more 

meaningful feedback on potential regressions or new 

bugs [41, 42]. 

• Intelligent Test Prioritization: Beyond test 

generation, the concept can be extended to intelligent test 

prioritization or selection, where existing test cases 

covering defect-prone modules are run first [23]. 

• Better Resource Allocation: For manual testing 

or code reviews, the output of the defect predictor can 

guide human efforts more precisely, while automated 

tools tackle the high-risk areas identified. 

• Complementary Approach: DP-SBST should be 

viewed as a complementary approach to traditional 

coverage-based testing. A balanced strategy might 

involve generating tests with DP-SBST for critical, fault-

prone components, and then using standard coverage-

based methods for broader system coverage. 

4.4. Threats to Validity 

Several threats to the validity of this empirical study 

should be acknowledged: 

• Internal Validity: 

o Tool Configuration: The choice of parameters 

for EvoSuite (e.g., population size, generation count, 

time budget) and the weighting factor k for defect 

proneness could influence results. Efforts were made to 

use recommended settings and perform sensitivity 

analysis. 

o Fault Detection Oracle: Reliance on Defects4J's 

provided test cases as the oracle for fault detection [43] 

means that only known, reproducible faults are 

considered. Other, undiscovered faults would not be 

counted. 

• External Validity: 

o Language and Projects: The study was conducted 

on Java projects from Defects4J. Generalizing the results 

to other programming languages, domains (e.g., 

embedded systems, web applications), or larger, 

industrial-scale projects requires further investigation 

[44]. 

o Defect Predictor Model: The specific defect 

prediction model and metrics used might influence the 

results. Different models or feature sets could yield 

varying levels of guidance effectiveness. 

• Construct Validity: 

o Defect Proneness Measurement: The accuracy of 

the defect predictor itself directly impacts the 

effectiveness of the guidance. Imperfections in the 
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predictor mean that some truly fault-prone modules 

might be missed, while some non-faulty ones might be 

over-prioritized. 

o Fitness Function Formulation: The specific 

mathematical formulation of the combined fitness 

function (e.g., multiplicative weighting) could impact 

how effectively defect proneness is integrated. 

4.5. Future Work 

Based on the findings and limitations, several promising 

avenues for future research exist: 

• Adaptive Weighting: Developing adaptive 

mechanisms for the k weighting factor in the fitness 

function, allowing it to adjust dynamically during the 

search based on observed fault detection or coverage 

progress. 

• Multi-objective Optimization: Exploring multi-

objective SBST approaches that explicitly optimize for 

both code coverage and defect proneness simultaneously, 

potentially using Pareto optimality concepts [3, 2]. 

• Integration with Other Metrics: Incorporating 

other types of metrics (e.g., run-time behavior, 

performance data) into the defect prediction model or 

directly into the SBST fitness function. 

• Domain-Specific Defect Predictors: Tailoring 

defect prediction models to specific application domains 

(e.g., cybersecurity, scientific computing) to enhance 

their relevance and accuracy for guiding testing in those 

contexts. 

• Feedback Loops: Investigating feedback loops 

where the faults found by DP-SBST are used to refine 

and improve the defect prediction model iteratively. 

• Application to Different SBST Variants: 

Applying defect prediction guidance to other SBST 

variants beyond evolutionary algorithms, such as 

constraint-based test generation [27, 30]. 

• Human-in-the-Loop Integration: Studying how 

defect prediction-guided SBST can best support human 

testers and developers, perhaps by providing prioritized 

test reports or highlighted areas for manual review. 

5. CONCLUSION 

This article has empirically demonstrated the significant 

benefits of integrating theoretical defect predictors into 

Search-Based Software Testing for automated test case 

generation. By guiding the SBST process towards 

modules identified as fault-prone, the proposed defect 

prediction-guided approach consistently found a higher 

number of unique faults and achieved a faster time to first 

fault compared to traditional coverage-guided methods. 

This research highlights a powerful synergy between 

static analysis for defect prediction and dynamic 

metaheuristic search for test generation. As software 

systems continue to grow in complexity, such intelligent, 

resource-aware automated testing strategies become 

increasingly vital. This work paves the way for more 

efficient, effective, and targeted software quality 

assurance practices, ultimately contributing to the 

delivery of more reliable software. 
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