
INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 10

eISSN: 3087-4289

Volume. 02, Issue. 02, pp. 10-18, February 2025"

CONVERGENT DATABASE ARCHITECTURES: MULTI-MODEL DESIGN

AND QUERY OPTIMIZATION IN NEWSQL SYSTEMS

Dr. Arjun S. Patel

Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

Prof. Elena D. Petrovna

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russia

Article received: 24/12/2024, Article Revised: 19/01/2025, Article Accepted: 21/02/2025

DOI: https://doi.org/10.55640/ijmcsit-v02i02-02

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the

terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and

reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

The contemporary data landscape, characterized by diverse data types and escalating volumes, has driven a significant

evolution in database management systems. Traditional Relational Database Management Systems (RDBMS) often

struggle with the scalability and flexibility required for modern applications, while NoSQL databases, though

scalable, frequently compromise on transactional consistency. NewSQL systems have emerged as a hybrid solution,

aiming to combine the ACID guarantees of RDBMS with the horizontal scalability of NoSQL. This report explores

the critical need for multi-model capabilities within NewSQL DBMSs to efficiently manage heterogeneous data

adhering to various data models—including relational, document, graph, and key-value—within a single, unified

database. It delves into the architectural considerations for supporting such diversity, examining storage paradigms

like row-store, column-store, and hybrid approaches, alongside data distribution strategies such as sharding and

partitioning. Furthermore, the paper investigates advancements in multi-model query languages, particularly SQL++

and extensions in SQL:2016, and discusses query optimization techniques essential for handling complex, hybrid

workloads. Finally, it addresses the performance evaluation of these systems in big data environments, highlights

current limitations, and outlines future research directions for achieving truly versatile and high-performing data

management solutions.

Keywords: Convergent database architectures, multi-model databases, NewSQL systems, query optimization,

hybrid data models, scalable data management, relational and NoSQL integration, unified query processing, database

performance, modern data architectures.

INTRODUCTION

A. The Evolving Data Landscape and Database

Paradigms

The digital age has ushered in an era of unprecedented

data growth, characterized not only by sheer volume but

also by immense variety. Enterprises today grapple with

structured, semi-structured, and unstructured data,

demanding database solutions that can handle this

heterogeneity while ensuring high performance and

scalability.[38] Traditional Relational Database

Management Systems (RDBMS), which have long

served as the backbone of data management, excel at

handling structured data with strong transactional

integrity (ACID properties: Atomicity, Consistency,

Isolation, Durability).[39, 40] However, their inherent

design, often optimized for vertical scaling (upgrading

existing server hardware), presents significant limitations

when faced with the demands of massive datasets and

high transaction volumes.[41, 42] These limitations

include scalability challenges, fixed schemas that are

difficult to adapt, performance bottlenecks with complex

joins, and complexities in maintaining high availability

in distributed environments.[41, 42]

In response to these challenges, NoSQL (Not only SQL)

https://aimjournals.com/index.php/ijmcsit
https://doi.org/10.55640/ijmcsit-v02i02-02

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 11

databases emerged as a viable alternative, prioritizing

horizontal scalability and flexibility for unstructured and

semi-structured data.[40, 43, 44, 45] NoSQL databases,

which include document-oriented (e.g., MongoDB), key-

value (e.g., Redis), and column-family (e.g., Cassandra)

stores, can distribute data across multiple nodes, handling

increased workloads and massive data volumes with

relative ease.[43, 44] However, this flexibility often

comes at a cost: many NoSQL systems relax ACID

compliance in favor of availability and partition tolerance

(as per the CAP theorem), leading to eventual

consistency models.[43, 45, 46] This trade-off makes

NoSQL unsuitable for applications requiring strict

transactional integrity, such as financial systems or

healthcare applications, where real-time consistency is

critical.[43, 46]

B. NewSQL: Bridging the Gap

To bridge the functional gap between the transactional

consistency of SQL and the horizontal scalability of

NoSQL, a new class of database systems, termed

NewSQL, emerged.[38, 39, 40, 42, 43, 44, 45, 47]

NewSQL databases are engineered to combine the best

features of both worlds: they retain the familiar SQL

interface and full ACID compliance of traditional

RDBMS while offering the distributed, scalable

performance typically associated with NoSQL

systems.[38, 39, 40, 42, 43, 45, 47]

Key characteristics of NewSQL systems include:

• SQL Compatibility: They support the widely

used SQL query language, minimizing re-learning and

migration overheads for developers.[38, 39, 45]

• ACID Compliance: They maintain full ACID

guarantees, even in distributed environments, ensuring

reliable transaction processing.[38, 39, 40, 43, 48]

• Distributed, Shared-Nothing Architecture:

NewSQL databases typically adopt a distributed system

architecture, partitioning data across multiple nodes to

improve scalability and availability, and ensuring no

single point of contention.[39, 40, 43, 48]

• Horizontal Scalability: They are designed to

scale out seamlessly by adding more servers, distributing

workloads and data across multiple machines.[38, 39, 40,

43, 48]

• High Availability and Fault Tolerance:

Mechanisms like replication and automatic failover

ensure continuous data accessibility even in the event of

hardware or network failures.[39, 45]

C. The Imperative for Multi-Model Capabilities in

NewSQL

The increasing diversity of data types in modern

enterprises necessitates database systems capable of

handling multiple data models simultaneously. NewSQL

DBMSs are evolving to provide robust multi-model

support, integrating various data paradigms within a

unified system.[49, 50] This capability allows

organizations to store and manage heterogeneous

collections of values—structured, semi-structured, and

unstructured—in a single database, optimizing for hybrid

workloads and ensuring continuous data availability.[49,

50]

Key aspects of multi-model support in NewSQL include:

• Relational Data: As their foundation, NewSQL

systems inherently support the relational model,

providing strong consistency and integrity guarantees for

structured data.[49, 50]

• Document Data (JSON, XML): NewSQL

databases are increasingly incorporating native support

for semi-structured data formats like JSON and XML.

This allows for flexible schemas, where new fields can

be added without costly migrations, similar to NoSQL

document stores.[38, 54]

• Graph-Oriented Data: Some NewSQL systems

are extending their capabilities to handle graph data,

enabling the storage and querying of complex

relationships, which is crucial for applications like social

networks or recommendation engines.[49, 50]

• Key-Value and Column-Family Data: While

often associated with NoSQL, the underlying storage

layers of some NewSQL databases, like TiKV in TiDB,

can function as key-value stores, providing high

performance for specific access patterns.[53, 54]

• Unified Design Methodology: A comprehensive

methodological approach for designing multi-model

databases in NewSQL involves identifying and defining

heterogeneous collections of values and integrating the

design processes of relational and NoSQL databases

across multiple levels of abstraction.[49, 50] This allows

designers to leverage the Nested Relational Model as a

"Pivot Model" to automatically generate external

schemas for virtual NoSQL databases, enabling users to

interact with the data store as if it were a native NoSQL

database.[49, 50]

D. Article Structure

The remainder of this article is structured as follows:

Section II provides an overview of foundational database

concepts and architectural elements relevant to multi-

model NewSQL systems. Section III delves into multi-

model query processing and optimization techniques.

Section IV discusses performance evaluation, current

limitations, and future research directions. Finally,

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 12

Section V concludes the paper, summarizing the key

insights and implications.

II. Foundational Concepts and Architectural

Elements

A. Evolution of Database Management Systems

The journey of Database Management Systems (DBMS)

has been a continuous adaptation to evolving data needs

and technological advancements.[44] It began with

Hierarchical Databases in the 1960s, organizing data in a

tree-like structure with parent-child relationships,

suitable for specific applications but lacking flexibility

for complex interconnections.[44] The 1970s marked a

significant shift with Relational Database Management

Systems (RDBMS), which store data in tables with well-

defined schemas and introduced SQL (Structured Query

Language) as the standard for querying and managing

data.[44] Popular RDBMS like Oracle, MySQL, and

SQL Server emerged during this era.[44]

As applications became more object-oriented, Object-

Oriented Database Management Systems (OODBMS)

appeared, storing data as objects, but their adoption was

limited by the dominance of RDBMS.[44] The 21st

century witnessed the rise of NoSQL databases, designed

to handle unstructured and semi-structured data, making

them ideal for big data and web applications. NoSQL

encompasses various types, including document-oriented

(e.g., MongoDB), key-value (e.g., Redis), and column-

family (e.g., Cassandra) stores.[44] Subsequently,

NewSQL databases emerged, combining the scalability

of NoSQL with the ACID compliance of RDBMS,

targeting high-performance, transactional

applications.[44] More specialized categories like Graph

Databases, excelling at handling data with complex

relationships (e.g., social networks), and Time-Series

Databases, optimized for time-stamped data (e.g., IoT),

further illustrate the dynamic nature of DBMS

evolution.[44]

B. Limitations of Traditional RDBMS

Despite their long-standing role as the bedrock of data

management, traditional RDBMS face several inherent

limitations that challenge their effectiveness in modern,

data-intensive environments:

• Scalability Challenges: RDBMS typically scale

vertically, meaning that to handle increased workloads,

hardware upgrades (CPU, memory) on a single server are

required.[42] This vertical scaling becomes prohibitively

expensive and eventually hits physical limits when

dealing with extremely large datasets or high transaction

volumes.[41] Horizontal scaling (adding more servers) is

often complicated and requires significant effort to

maintain performance and consistency.[41]

• Fixed Schema Rigidity: Traditional RDBMS

enforce a fixed schema, where the structure of the

database must be defined in advance.[41, 42] Modifying

this schema, such as adding new columns or changing

relationships, can be a cumbersome process, often

requiring downtime or significant changes to existing

applications. This lack of flexibility is a major drawback

in fast-evolving environments that demand agile data

structures.[41]

• Performance Bottlenecks with Complex Joins: In

relational databases, operations involving complex joins

across multiple tables can lead to severe performance

degradation.[41, 42] As the number of tables and the

complexity of relationships increase, query execution

time rises significantly, especially with large

datasets.[41]

• Concurrency Issues: Managing data concurrency

when multiple users or applications simultaneously

access and modify the database can be challenging.[41]

Locking mechanisms, while ensuring data consistency,

can lead to performance degradation under heavy

load.[41]

• Limited Support for Unstructured Data: RDBMS

are primarily designed for structured data and are not

well-suited for handling unstructured or semi-structured

data like images, documents, or JSON objects.[41] While

some RDBMS offer specialized data types for such

content, they are generally less efficient than NoSQL

databases for these workloads.[41]

C. Challenges of NoSQL Databases

While NoSQL databases offered a compelling solution to

the scalability limitations of RDBMS, they introduced

their own set of challenges, particularly concerning data

consistency and reliability:

• Relaxed Consistency Models: Most NoSQL

databases prioritize availability and partition tolerance

over strong consistency, adhering to the CAP

theorem.[43] This often results in "eventual consistency,"

where data might not be immediately synchronized

across all nodes.[43] While beneficial for high

availability and low-latency responses, this model is

unsuitable for applications that require strict transactional

integrity, such as financial transactions or healthcare

applications.[43, 46]

• Complexity in Maintaining Data Consistency:

The eventual consistency model of NoSQL can create

significant challenges for applications that demand real-

time consistency.[43] Developers often need to

implement additional application-level logic to handle

data synchronization and resolve conflicts, which

complicates development for critical systems.[43]

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 13

• Lack of Standardized Query Language: Unlike

SQL for RDBMS, NoSQL databases typically lack a

single, universally adopted query language. Each NoSQL

database often has its own unique API or query language,

increasing the learning curve and hindering

interoperability across different NoSQL solutions.

• Limited Support for Complex Queries: While

NoSQL excels at simple key-value lookups or document

retrievals, performing complex analytical queries, multi-

table joins, or aggregations can be challenging or

inefficient compared to SQL.[52]

D. Advantages of NewSQL DBMSs

NewSQL databases represent a strategic evolution,

combining the strengths of traditional RDBMS and

NoSQL systems to address the demands of modern

applications. Their key advantages include:

• SQL Compatibility with Scalability: NewSQL

systems are designed to retain full SQL support while

overcoming the performance and scalability limitations

of conventional SQL databases.[38, 39, 40] They

introduce distributed, scalable architectures that allow for

horizontal scaling, efficiently distributing workloads

across multiple nodes without sacrificing SQL

functionality.[39]

• Full ACID Compliance: Unlike many NoSQL

databases, NewSQL systems maintain full ACID

guarantees (Atomicity, Consistency, Isolation,

Durability) even in distributed environments.[38, 39, 40,

43, 48] This ensures reliable transaction processing and

strong data consistency, critical for applications like

financial systems and e-commerce platforms.[45]

• Distributed, Shared-Nothing Architecture:

NewSQL databases typically adopt a shared-nothing

architecture, where each node operates independently

without sharing memory or disk with other nodes.[39]

This design eliminates single points of contention,

making them ideal for handling big data workloads and

ensuring high availability.[39] Data is partitioned across

many servers, providing fault tolerance and seamless

scale-out capabilities.[39]

• High Availability and Fault Tolerance: Many

NewSQL databases are built with high availability and

fault tolerance in mind, utilizing mechanisms such as

replication and automatic failover to ensure continuous

data accessibility.[39, 48] Systems like Google Spanner

exemplify this by providing geographically distributed

databases that ensure data is always available, even

across data centers.[39, 48]

• Hybrid Workload Optimization (HTAP): Some

NewSQL systems are designed to handle both Online

Transaction Processing (OLTP) and Online Analytical

Processing (OLAP) workloads efficiently within a single

database, a concept known as Hybrid

Transactional/Analytical Processing (HTAP).[49, 50, 51,

53] This eliminates the need for separate databases for

transactional and analytical tasks, simplifying

architecture and reducing data movement.

E. Multi-Model Data Support in NewSQL

The increasing diversity of data types in modern

enterprises necessitates database systems capable of

handling multiple data models simultaneously. NewSQL

DBMSs are evolving to provide robust multi-model

support, integrating various data paradigms within a

unified system.[38, 49, 50, 54] This capability allows

organizations to store and manage heterogeneous

collections of values—structured, semi-structured, and

unstructured—in a single database, optimizing for hybrid

workloads and ensuring continuous data availability.[49,

50]

Key aspects of multi-model support in NewSQL include:

• Relational Data: As their foundation, NewSQL

systems inherently support the relational model,

providing strong consistency and integrity guarantees for

structured data.[49, 50]

• Document Data (JSON, XML): NewSQL

databases are increasingly incorporating native support

for semi-structured data formats like JSON and XML.

This allows for flexible schemas, where new fields can

be added without costly migrations, similar to NoSQL

document stores.[38, 54]

• Graph-Oriented Data: Some NewSQL systems

are extending their capabilities to handle graph data,

enabling the storage and querying of complex

relationships, which is crucial for applications like social

networks or recommendation engines.[49, 50]

• Key-Value and Column-Family Data: While

often associated with NoSQL, the underlying storage

layers of some NewSQL databases, like TiKV in TiDB,

can function as key-value stores, providing high

performance for specific access patterns.[53, 54]

• Unified Design Methodology: A comprehensive

methodological approach for designing multi-model

databases in NewSQL involves identifying and defining

heterogeneous collections of values and integrating the

design processes of relational and NoSQL databases

across multiple levels of abstraction.[49, 50] This allows

designers to leverage the Nested Relational Model as a

"Pivot Model" to automatically generate external

schemas for virtual NoSQL databases, enabling users to

interact with the data store as if it were a native NoSQL

database.[49, 50]

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 14

F. Storage Architectures: Row-Store, Column-Store, and

Hybrid

The internal storage architecture significantly impacts a

NewSQL DBMS's performance for different workloads.

The primary layouts include row-store, column-store,

and hybrid-store.[55]

• Row-Store: In a row-store, each entity (or

record) is assigned a dedicated row, and all attributes of

a tuple are stored contiguously.[55] This layout is highly

efficient for Online Transaction Processing (OLTP)

workloads, which typically involve interactive

transactions like retrieving all attributes from a single

entity or adding new entities, as the entire row can be

written in a single operation.[55] However, for analytical

queries that only need a few columns, row-stores can be

inefficient due to unnecessary data transfer.[55]

• Column-Store: Column-oriented database

systems store tables of tuple attributes contiguously by

column.[55] This design is highly efficient for Online

Analytical Processing (OLAP) workloads, such as data

warehousing, decision support, and business intelligence

applications, where queries often involve aggregating

data across many rows but only a few columns.[55, 56]

Column-stores can perform orders of magnitude better

than row-stores on analytical workloads.[55] However,

they are less efficient for write-intensive operations or

when retrieving entire rows.[55]

• Hybrid-Store: Recognizing the trade-offs,

hybrid-store architectures combine both row-store and

column-store characteristics.[55, 56] This approach

allows for storing insert and update-intensive data in row-

store components while analytical and historical data

reside in column-store components.[55] For example,

StarRocks supports hybrid row-column storage, where

data is stored in both fashions, enabling high-

concurrency, low-latency point queries and partial

column updates, while still delivering efficient analytical

capabilities.[56] This hybrid approach aims to optimize

for diverse workloads within a single system.

G. Data Distribution Strategies: Sharding and

Partitioning

To achieve horizontal scalability and high availability,

NewSQL DBMSs employ sophisticated data distribution

strategies, primarily sharding and partitioning.[40, 43,

48, 57] While often used interchangeably, they refer to

distinct levels of data organization:

• Partitioning: This typically refers to dividing a

single database (and often a single table) into multiple

segments called partitions within the same database

server or cluster node.[57] All partitions remain part of

one overall database instance, collectively representing

one logical table split based on a key like date or an ID

range.[57] Partitioning improves manageability and

query performance on very large tables by allowing

queries to scan only relevant segments (partition

pruning).[57] However, it does not increase the total

processing power or storage beyond what one server

provides.[57]

• Sharding (Horizontal Partitioning): Sharding

involves distributing portions of the data across multiple

separate database servers or instances, with each server

holding a subset of the data known as a shard.[40, 48, 57]

The primary motivation for sharding is to distribute the

load, allowing the overall system to handle more users or

transactions than a single server could.[57] Each shard

might have the same schema but contains only the rows

pertaining to a certain portion of the data (e.g., a subset

of customers based on a shard key).[57] NewSQL

systems often integrate middleware for automatic and

transparent sharding, fragmenting tables and indexes

horizontally and distributing them across geographically

dispersed servers.[40, 48, 50] While powerful for scaling,

sharding introduces complexities such as increased

application complexity, potential for uneven data

distribution (hotspots), and difficulties with cross-shard

operations.[57]

III. Multi-Model Query Processing and Optimization

A. Unified Query Languages for Multi-Model Data

The ability to manage diverse data models within a single

NewSQL DBMS necessitates query languages that can

seamlessly interact with these varied structures.

Traditional SQL, designed for strictly relational data,

requires extensions to handle semi-structured, nested,

and graph-oriented data effectively.

• SQL++: This is a prominent SQL extension

designed to relax SQL's strictness regarding both object

structure (from flat to nested) and schema (from

mandatory to optional).[58] SQL++ views relational data

as a subset of a more flexible object model and naturally

supports collections of document data (e.g., JSON).[58]

It provides syntax and semantics to comprehensively

access, query, and construct nested data while naturally

composing with standard SQL features.[58] The goal of

SQL++ is to broaden the scope of SQL itself, making it

backward-compatible while handling schema-optional

data.[58]

• SQL:2016 Extensions: The SQL:2016 standard

introduced significant enhancements to support JSON

data, including functions for creating, querying, and

manipulating JSON documents within a relational

database context.[1] This allows SQL to interact more

directly with semi-structured data, blurring the lines

between traditional relational and document models.

Furthermore, the upcoming SQL/PGQ (Property Graph

Queries) standard (ISO/IEC 9075-16:2023) aims to

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 15

standardize graph query capabilities within SQL,

enabling direct querying of graph data.[2] These

extensions allow NewSQL systems to provide a unified

query interface that can span multiple data models,

reducing the need for developers to learn different query

languages for different data types.[38, 52]

B. Query Optimization Techniques

Efficient query processing is paramount in multi-model

NewSQL DBMSs, especially when dealing with large,

heterogeneous datasets and hybrid workloads. Query

optimization techniques are crucial for ensuring high

performance and scalability.[50, 52]

• Indexing: Creating indexes on frequently queried

fields is a fundamental technique to improve query

performance.[52] NewSQL systems support various

indexing strategies, including traditional B-trees [3] and

specialized indexes for different data models (e.g.,

inverted indexes for document data or graph indexes for

graph traversals). Join indexes [4] and materialized views

[5] can further accelerate complex queries and analytical

workloads by pre-computing and storing results.

• Caching and Buffering: Implementing caching

mechanisms (e.g., Redis or Memcached) helps reduce the

load on the database by storing frequently accessed data

in memory, thereby improving data throughput and

performance.[40, 52] Optimizing cache invalidation

strategies is essential to ensure data consistency and

freshness.[52]

• Query Rewriting and Simplification: Breaking

down complex queries into simpler, more efficient sub-

queries can significantly improve execution time.[52]

Query planners and cost optimizers within NewSQL

systems analyze query structures and data distribution to

determine the most efficient execution plan, often

leveraging distributed execution capabilities.[53]

• Distributed Query Processing: NewSQL

databases are designed for distributed query execution,

where queries are fragmented and processed in parallel

across multiple shards or nodes.[40, 48, 57] This involves

routing queries to the correct shards based on shard keys

and handling the aggregation of results from multiple

nodes.[57] Techniques like partition pruning, where the

database "cuts away" partitions not needed for a given

query, further reduce I/O and improve efficiency.[57]

• Storage Model Optimization: Choosing a data

storage format optimized for specific use cases, such as

column-store for analytical queries or row-store for

transactional workloads, is critical.[52] Hybrid storage

architectures allow NewSQL to dynamically adapt to

different query patterns.[55, 56]

C. Unified Data Access Layer

A key architectural goal of multi-model NewSQL

DBMSs is to provide a unified data access layer. This

layer abstracts away the complexities of underlying

heterogeneous data models and distributed storage,

presenting a consistent interface to applications and

users.[47, 53]

• Simplified Development: By offering a single

query language (like an extended SQL) and a consistent

API, developers can interact with diverse data types

without needing to learn multiple database-specific

languages or manage complex data transformations.[38,

52] This significantly reduces development time and

effort.

• Data Silo Elimination: A unified access layer

helps eliminate data silos, where different data types are

isolated in separate, specialized databases.[47] This

integration fosters a more holistic view of enterprise data

and enables cross-model queries that were previously

difficult or impossible.

• Hybrid Workload Support: The unified layer

facilitates Hybrid Transactional/Analytical Processing

(HTAP) by allowing both OLTP and OLAP queries to

run efficiently against the same data store, regardless of

its underlying multi-model structure.[53] This is

achieved through sophisticated query routing and

optimization that leverages the appropriate storage and

processing mechanisms for each query.

• Interoperability: The goal is to provide a

platform where various workloads, such as data

warehousing and machine learning, can be supported on

a unified platform.[47] This includes the ability to query

SQL, NoSQL, and NewSQL data from a single platform,

enhancing overall system versatility.[38]

IV. Performance Evaluation and Future Outlook

A. Performance Evaluation for Big Data Workloads

Evaluating the performance of multi-model NewSQL

DBMSs for big data workloads is crucial to validate their

effectiveness in real-world scenarios. These evaluations

typically focus on their ability to handle hybrid

transactional and analytical processing (HTAP)

efficiently, as well as their scalability under increasing

data volumes and user loads.[49, 50, 51]

• Benchmarking: Performance is often assessed

through benchmarks that compare NewSQL databases

against traditional RDBMS (e.g., MySQL) in cloud

environments.[59] These comparisons measure response

times under various workload configurations, including

different mixes of read/write operations and query

complexities.[59]

• Scalability Metrics: Key metrics include

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 16

throughput (transactions per second), latency (response

time for queries), and the ability to maintain performance

as the number of nodes or data volume increases.[39, 52]

NewSQL systems are expected to demonstrate linear

scalability, where performance increases proportionally

with added resources.

• Hybrid Workload Performance: Evaluations

specifically test the system's capability to handle

concurrent transactional and analytical queries without

significant degradation in either. This is a core promise

of HTAP-enabled NewSQL databases.[49, 50, 51]

B. Limitations and Open Issues

Despite their significant advancements, multi-model

NewSQL DBMSs still face several limitations and open

issues that require ongoing research and development:

• Increased Design Complexity: The integration of

multiple data models and distributed architectures

inherently increases the complexity of database

design.[50] Designers must make intricate choices

regarding storage models, access paths, and sharding

strategies to optimize for diverse workloads, which can

be challenging.[49, 50]

• Data Distribution Challenges: While sharding

enables horizontal scalability, it introduces complexities

such as potential for uneven data distribution (hotspots)

and difficulties with cross-shard operations.[43, 48, 57]

Ensuring consistent data synchronization across multiple

servers in a distributed environment is difficult due to

network latency, server failures, and replication delays,

potentially leading to temporary inconsistencies.[48]

• Learning Curve and Compatibility Issues: The

relative novelty of NewSQL technologies means that

each new implementation may require a non-overlapping

learning curve for developers and administrators.[45]

Furthermore, compatibility issues with existing data

models and schemas can lead to considerable migration

efforts for legacy applications.[45]

• Usability Concerns: While NewSQL systems

aim for flexible installation and maintenance, the

complexity of distributed systems can make query

formulation difficult for end-users, potentially affecting

user experience.[60] Improving compiler error messages

and providing constructive hints for error resolution are

areas for improvement.[60]

• Partial Access to Traditional Features: Some

NewSQL solutions may offer only partial access to the

rich features available in traditional RDBMS, which

could be a disadvantage for certain use cases.[54]

C. Future Research Directions

The continuous evolution of data management presents

several promising avenues for future research in multi-

model NewSQL DBMSs:

• Enhanced Usability and Developer Experience:

Future research should focus on simplifying the design,

deployment, and management of multi-model NewSQL

systems. This includes developing more intuitive tools,

improving error messaging, and providing better

guidance for optimizing complex, hybrid workloads.[60]

• Adaptive Query Optimization: Developing more

intelligent and adaptive query optimizers that can

dynamically adjust execution plans based on real-time

workload characteristics and data distribution patterns is

crucial. This could involve leveraging AI-driven query

optimization techniques.[38]

• Automated Data Model Selection and Mapping:

Research into automated mechanisms for identifying the

most suitable data model for specific data types and

workloads, and for seamlessly mapping between

different models, would further enhance multi-model

capabilities.

• Advanced Consistency Models: Exploring more

nuanced consistency models beyond strict ACID or

eventual consistency that can be dynamically tuned to

specific application requirements, offering a balance

between performance, availability, and consistency.

• Serverless and Cloud-Native Architectures:

Further integration with serverless computing and cloud-

native architectures can enhance the elasticity, cost-

efficiency, and operational simplicity of NewSQL

deployments.[38]

• Cross-Model Query Language Standardization:

Continued efforts to standardize query languages like

SQL/PGQ [2] and further extend SQL++ will be vital for

broader adoption and interoperability across multi-model

NewSQL systems.

V. CONCLUSION

The advent of NewSQL DBMSs marks a pivotal moment

in database technology, effectively bridging the historical

divide between the strong consistency of traditional

RDBMS and the horizontal scalability of NoSQL

databases. This report has underscored the increasing

necessity for multi-model capabilities within these hybrid

systems, enabling enterprises to manage the burgeoning

volume and diversity of data—from structured relational

tables to flexible JSON documents and intricate graph

structures—within a single, unified platform.

We have explored the foundational architectural

elements that underpin multi-model NewSQL, including

adaptable storage paradigms (row-store, column-store,

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 17

and hybrid) and sophisticated data distribution strategies

(sharding and partitioning). The evolution of query

languages, particularly SQL++ and the extensions within

SQL:2016, is critical for providing a unified interface to

interact with these diverse data models, complemented

by advanced optimization techniques to ensure high

performance for complex, hybrid workloads.

While NewSQL offers compelling advantages for big

data environments, challenges related to design

complexity, data distribution, and the learning curve for

new implementations persist. Addressing these

limitations through continued research into enhanced

usability, adaptive query optimization, and further

standardization will be crucial. Ultimately, the ongoing

development of multi-model NewSQL DBMSs promises

to deliver increasingly versatile, efficient, and resilient

data management solutions, capable of meeting the

dynamic demands of the modern digital landscape.

REFERENCES

Guo Q, Zhang C, Zhang S, Lu J. Multi-model query

languages: taming the variety of big data. Distributed and

Parallel Databases, 2024, 42: 31–71.

Lu J, Holubova I. Multi-model Databases: A New

Journey to Handle the Variety of Data. ACM Computing

Surveys, 2019, Vol. 0, No. 0.

Michels J, Hare K, Kulkarni K, Zuzarte C, Liu Z H,

Hammerschmidt B, Zemke F. The New and Improved

SQL: 2016 Standard. SIGMOD Record, June 2018, Vol.

47, No. 2.

Ong K W, Papakonstantinou Y, Vernoux R. The SQL++

Unifying Semi-structured Query Language, and an

Expressiveness Benchmark of SQL-on-Hadoop, NoSQL

and NewSQL Databases. arXiv: 1405.3631, Dec. 2015.

Krishnappa M S, Harve B M, Jayaram V, Nagpal A,

Ganeeb K K, Ingole B S. ORACLE 19C Sharding: A

Comprehensive Guide to Modern Data Distribution.

IJCET, Sep-Oct 2024, Volume 15, Issue 5.

Akinola S. Trends in Open Source RDBMS:

Performance, Scalability and Security Insights. Journal

of Research in Science and Engineering (JRSE), July

2024, Volume-6, Issue-7.

Miryala N K. Emerging Trends and Challenges in

Modern Database Technologies: A Comprehensive

Analysis. International Journal of Science and Research

(IJSR), November 2024, Volume 13 Issue 11.

Muhammed A, Abdullah Z H, Ismail W, Aldailamy A Y,

Radman A, Hendradi R, Afandi R R. A Survey of

NewSQL DBMSs focusing on Taxonomy, Comparison

and Open Issues. IJCSMC, December 2021, Volume 11,

Issue 4.

Khasawneh T N, Alsahlee M, Safieh A. SQL, NewSQL,

and NOSQL Databases: A Comparative Survey. In 2020

11th International Conference on Information and

Communication Systems (ICICS).

Murazzo M, Gómez P, Rodríguez N, Medel D. Database

NewSQL Performance Evaluation for Big Data in the

Public Cloud. In Book Communications in Computer and

Information Science ((CCIS, volume 1050)), Naiouf, M.,

Chichizola, F., Rucci, E. (eds) Cloud Computing and Big

Data. JCC&BD 2019.

Pavlo A, Aslett M. What’s Really New with NewSQL?

SIGMOD Record, June 2016, Vol. 45, No. 2.

Maia F C M B O. Sharding by Hash Partitioning A

database scalability pattern to achieve evenly sharded

database clusters. 17th ICEIS At: Barcelona, Spain, April

2015.

Moniruzzaman A. NewSQL: Towards Next-Generation

Scalable RDBMS for Online Transaction Processing

(OLTP) for Big Data Management. arXiv preprint arXiv:

1411.7343, 2014.

Tankoano J. Providing in RDBMSs the flexibility to

Work with Various Non-Relational Data Models. Global

Journal of Computer Science and Technology: H

Information & Technology, 2023, Volume 23 Issue 2

Version 1.0.

DOI:(https://doi.org/10.34257/GJCSTHVOL23IS2PG1.

Chen P. The entity-relationship model - toward a unified

view of data. ACM TODS, March 1976, Volume 1, Issue

1, pp 9–36.

Object Modeling Group. Unified Modeling Language

Specification. October 2012, Version 2.5.

Valduriez P, Khoshajian S, Copeland G. Implementation

Techniques of Complex Objects. 12th Int. Conference on

Very Large Data Bases - Kyoto, August 1986.

Lahiri T, Abiteboul S, Widom J. Ozone: Integrating

Structured and Semistructured Data. 7th Int. Workshop

on Database Programming Languages: Research Issues

in Structured and Semi-structured Database

Programming, December 1999.

Natti, M. (2023). Reducing PostgreSQL read and write

latencies through optimized fillfactor and HOT

percentages for high-update applications. International

Journal of Science and Research Archive, 9(2), 1059–

1062. https://doi.org/10.30574/ijsra.2023.9.2.0657

Scholl M H. Extensions to the Relational Data Model.

Available

from:(https://www.researchgate.net/publication/238121

https://aimjournals.com/index.php/ijmcsit

INTERNATIONAL JOURNAL OF MODERN COMPUTER

SCIENCE AND IT INNOVATIONS (IJMCSIT)

https://aimjournals.com/index.php/ijmcsit

pg. 18

7_Extensions_to_the_Relational_Data_Model)

(accessed 29 March 2025).

Tankoano J. Modèle relationnel imbriqué. In SGBD

relationnels – Tome 2, Vers les Bases de données

Réparties, Objet, Objet-relationnelles, XML, …

Available

from:(https://www.researchgate.net/publication/366548

683_SGBD_relationnels_-

_Tome_2_Vers_les_Bases_de_donnees_Reparties_Obje

t_Objet-relationnelles_XML) (accessed 29 March 2025).

Ozsoyoglu Z M, Yuan L Y. On the normalization in

Nested Relational Databases. LNCS, 1989, volume 361.

Abadi D J, Madden S R, Hachem N. Column-Stores vs.

Row-Stores: How Different Are They Really?

SIGMOD'08, June 9–12, 2008, Vancouver, BC, Canada.

ORACLE. Oracle Database SQL Language. Reference

23ai, F47038-19, November 2024.

Comer D. The Ubiquitous B-Tree. Computing Surveys,

June 1979, vol. 11, n° 2.

Valduriez P. Join Indices. ACM TODS, June 1987, Vol.

12, No. 2, Pages 218-246.

Mohod A P, Chaudhari M S. Improve Query

Performance Using Effective Materialized View

Selection and Maintenance: A Survey. IJCSMC, April

2013, Vol. 2, Issue. 4, pg. 485 – 490.

International Organization for Standardization (ISO).

Information technology — Database languages SQL Part

16: Property Graph Queries (SQL/PGQ). (Edition 1,

2023), ISO/IEC 9075-16: 2023.

Costa C H, Filho J V B M, Lou Y, Lai L, Lyu B, Yang Y,

Zhou X, Yu W, Zhang Y, Zhou J. Towards a Converged

Relational-Graph Optimization Framework. Proc. ACM

Manag. Data, Vol. 2, No. 6 (SIGMOD), December 2024.

Fagin R, Kolaitis P G, Nash A. Towards a Theory of

Schema-Mapping Optimization”. PODS’08, June 9–12,

2008, Vancouver, BC, Canada.

Bézivin J, Gerbé O. Towards a precise definition of the

OMG/MDA framework. Proc. 16th Annual Int. Conf. on

Automated Software Engineering (ASE 2001).

Asaad C, Ba K. NoSQL Databases: Seek for a Design

Methodology. 8th Int. Conference, MEDI 2018,

Marrakesh, Morocco, October 24–26, 2018.

Bondiombouy C, Valduriez P. Query Processing in

Multistore Systems: an overview. RR-8890, INRIA

Sophia Antipolis - Méditerranée. 2016, pp. 38. hal-

01289759v2.

Atzeni P, Bugiotti F, Rossi L. Uniform Access to Non-

relational Database Systems: The SOS Platform. J.

Ralyt´e et al. (Eds.): CAiSE 2012, LNCS 7328, pp. 160–

174, 2012.

Vathy-Fogarassy Á, Hugyák T. Uniform data access

platform for SQL and NoSQL database systems.

Information Systems, September 2017, Volume 69,

Pages 93-105.

Shin K, Hwang C, Jung H. NoSQL Database Design

Using UML Conceptual Data Model Based on Peter

Chen’s Framework. Int. Journal of Applied Engineering

Research ISSN 0973-4562 Volume 12, Number 5 (2017)

pp. 632-636.

Abdelhedi F, Brahim A A, Atigui F, Zurfluh G. Logical

Unified Modeling For NoSQL DataBases. 19th ICEIS

2017, Apr 2017, Porto, Portugal. pp. 249-256. hal-

01782574.

Stonebraker M. NoSQL and Enterprises. Cacm | august

2011 | vol. 54 | no.

Natti, M. (2023). Migrating from Oracle to PostgreSQL:

Leveraging Open-Source to Reduce Database Costs and

Enhance Flexibility. The Eastasouth Journal of

Information System and Computer Science, 1(02), 109–

112. https://doi.org/10.58812/esiscs.v1i02.433

https://aimjournals.com/index.php/ijmcsit

