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ABSTRACT 

 

The contemporary data landscape, characterized by diverse data types and escalating volumes, has driven a significant 

evolution in database management systems. Traditional Relational Database Management Systems (RDBMS) often 

struggle with the scalability and flexibility required for modern applications, while NoSQL databases, though 

scalable, frequently compromise on transactional consistency. NewSQL systems have emerged as a hybrid solution, 

aiming to combine the ACID guarantees of RDBMS with the horizontal scalability of NoSQL. This report explores 

the critical need for multi-model capabilities within NewSQL DBMSs to efficiently manage heterogeneous data 

adhering to various data models—including relational, document, graph, and key-value—within a single, unified 

database. It delves into the architectural considerations for supporting such diversity, examining storage paradigms 

like row-store, column-store, and hybrid approaches, alongside data distribution strategies such as sharding and 

partitioning. Furthermore, the paper investigates advancements in multi-model query languages, particularly SQL++ 

and extensions in SQL:2016, and discusses query optimization techniques essential for handling complex, hybrid 

workloads. Finally, it addresses the performance evaluation of these systems in big data environments, highlights 

current limitations, and outlines future research directions for achieving truly versatile and high-performing data 

management solutions. 

 

Keywords: Convergent database architectures, multi-model databases, NewSQL systems, query optimization, 

hybrid data models, scalable data management, relational and NoSQL integration, unified query processing, database 

performance, modern data architectures. 

 

INTRODUCTION  

A. The Evolving Data Landscape and Database 

Paradigms 

The digital age has ushered in an era of unprecedented 

data growth, characterized not only by sheer volume but 

also by immense variety. Enterprises today grapple with 

structured, semi-structured, and unstructured data, 

demanding database solutions that can handle this 

heterogeneity while ensuring high performance and 

scalability.[38] Traditional Relational Database 

Management Systems (RDBMS), which have long 

served as the backbone of data management, excel at 

handling structured data with strong transactional 

integrity (ACID properties: Atomicity, Consistency, 

Isolation, Durability).[39, 40] However, their inherent 

design, often optimized for vertical scaling (upgrading 

existing server hardware), presents significant limitations 

when faced with the demands of massive datasets and 

high transaction volumes.[41, 42] These limitations 

include scalability challenges, fixed schemas that are 

difficult to adapt, performance bottlenecks with complex 

joins, and complexities in maintaining high availability 

in distributed environments.[41, 42] 

In response to these challenges, NoSQL (Not only SQL) 
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databases emerged as a viable alternative, prioritizing 

horizontal scalability and flexibility for unstructured and 

semi-structured data.[40, 43, 44, 45] NoSQL databases, 

which include document-oriented (e.g., MongoDB), key-

value (e.g., Redis), and column-family (e.g., Cassandra) 

stores, can distribute data across multiple nodes, handling 

increased workloads and massive data volumes with 

relative ease.[43, 44] However, this flexibility often 

comes at a cost: many NoSQL systems relax ACID 

compliance in favor of availability and partition tolerance 

(as per the CAP theorem), leading to eventual 

consistency models.[43, 45, 46] This trade-off makes 

NoSQL unsuitable for applications requiring strict 

transactional integrity, such as financial systems or 

healthcare applications, where real-time consistency is 

critical.[43, 46] 

B. NewSQL: Bridging the Gap 

To bridge the functional gap between the transactional 

consistency of SQL and the horizontal scalability of 

NoSQL, a new class of database systems, termed 

NewSQL, emerged.[38, 39, 40, 42, 43, 44, 45, 47] 

NewSQL databases are engineered to combine the best 

features of both worlds: they retain the familiar SQL 

interface and full ACID compliance of traditional 

RDBMS while offering the distributed, scalable 

performance typically associated with NoSQL 

systems.[38, 39, 40, 42, 43, 45, 47] 

Key characteristics of NewSQL systems include: 

• SQL Compatibility: They support the widely 

used SQL query language, minimizing re-learning and 

migration overheads for developers.[38, 39, 45] 

• ACID Compliance: They maintain full ACID 

guarantees, even in distributed environments, ensuring 

reliable transaction processing.[38, 39, 40, 43, 48] 

• Distributed, Shared-Nothing Architecture: 

NewSQL databases typically adopt a distributed system 

architecture, partitioning data across multiple nodes to 

improve scalability and availability, and ensuring no 

single point of contention.[39, 40, 43, 48] 

• Horizontal Scalability: They are designed to 

scale out seamlessly by adding more servers, distributing 

workloads and data across multiple machines.[38, 39, 40, 

43, 48] 

• High Availability and Fault Tolerance: 

Mechanisms like replication and automatic failover 

ensure continuous data accessibility even in the event of 

hardware or network failures.[39, 45] 

C. The Imperative for Multi-Model Capabilities in 

NewSQL 

The increasing diversity of data types in modern 

enterprises necessitates database systems capable of 

handling multiple data models simultaneously. NewSQL 

DBMSs are evolving to provide robust multi-model 

support, integrating various data paradigms within a 

unified system.[49, 50] This capability allows 

organizations to store and manage heterogeneous 

collections of values—structured, semi-structured, and 

unstructured—in a single database, optimizing for hybrid 

workloads and ensuring continuous data availability.[49, 

50] 

Key aspects of multi-model support in NewSQL include: 

• Relational Data: As their foundation, NewSQL 

systems inherently support the relational model, 

providing strong consistency and integrity guarantees for 

structured data.[49, 50] 

• Document Data (JSON, XML): NewSQL 

databases are increasingly incorporating native support 

for semi-structured data formats like JSON and XML. 

This allows for flexible schemas, where new fields can 

be added without costly migrations, similar to NoSQL 

document stores.[38, 54] 

• Graph-Oriented Data: Some NewSQL systems 

are extending their capabilities to handle graph data, 

enabling the storage and querying of complex 

relationships, which is crucial for applications like social 

networks or recommendation engines.[49, 50] 

• Key-Value and Column-Family Data: While 

often associated with NoSQL, the underlying storage 

layers of some NewSQL databases, like TiKV in TiDB, 

can function as key-value stores, providing high 

performance for specific access patterns.[53, 54] 

• Unified Design Methodology: A comprehensive 

methodological approach for designing multi-model 

databases in NewSQL involves identifying and defining 

heterogeneous collections of values and integrating the 

design processes of relational and NoSQL databases 

across multiple levels of abstraction.[49, 50] This allows 

designers to leverage the Nested Relational Model as a 

"Pivot Model" to automatically generate external 

schemas for virtual NoSQL databases, enabling users to 

interact with the data store as if it were a native NoSQL 

database.[49, 50] 

D. Article Structure 

The remainder of this article is structured as follows: 

Section II provides an overview of foundational database 

concepts and architectural elements relevant to multi-

model NewSQL systems. Section III delves into multi-

model query processing and optimization techniques. 

Section IV discusses performance evaluation, current 

limitations, and future research directions. Finally, 
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Section V concludes the paper, summarizing the key 

insights and implications. 

II. Foundational Concepts and Architectural 

Elements 

A. Evolution of Database Management Systems 

The journey of Database Management Systems (DBMS) 

has been a continuous adaptation to evolving data needs 

and technological advancements.[44] It began with 

Hierarchical Databases in the 1960s, organizing data in a 

tree-like structure with parent-child relationships, 

suitable for specific applications but lacking flexibility 

for complex interconnections.[44] The 1970s marked a 

significant shift with Relational Database Management 

Systems (RDBMS), which store data in tables with well-

defined schemas and introduced SQL (Structured Query 

Language) as the standard for querying and managing 

data.[44] Popular RDBMS like Oracle, MySQL, and 

SQL Server emerged during this era.[44] 

As applications became more object-oriented, Object-

Oriented Database Management Systems (OODBMS) 

appeared, storing data as objects, but their adoption was 

limited by the dominance of RDBMS.[44] The 21st 

century witnessed the rise of NoSQL databases, designed 

to handle unstructured and semi-structured data, making 

them ideal for big data and web applications. NoSQL 

encompasses various types, including document-oriented 

(e.g., MongoDB), key-value (e.g., Redis), and column-

family (e.g., Cassandra) stores.[44] Subsequently, 

NewSQL databases emerged, combining the scalability 

of NoSQL with the ACID compliance of RDBMS, 

targeting high-performance, transactional 

applications.[44] More specialized categories like Graph 

Databases, excelling at handling data with complex 

relationships (e.g., social networks), and Time-Series 

Databases, optimized for time-stamped data (e.g., IoT), 

further illustrate the dynamic nature of DBMS 

evolution.[44] 

B. Limitations of Traditional RDBMS 

Despite their long-standing role as the bedrock of data 

management, traditional RDBMS face several inherent 

limitations that challenge their effectiveness in modern, 

data-intensive environments: 

• Scalability Challenges: RDBMS typically scale 

vertically, meaning that to handle increased workloads, 

hardware upgrades (CPU, memory) on a single server are 

required.[42] This vertical scaling becomes prohibitively 

expensive and eventually hits physical limits when 

dealing with extremely large datasets or high transaction 

volumes.[41] Horizontal scaling (adding more servers) is 

often complicated and requires significant effort to 

maintain performance and consistency.[41] 

• Fixed Schema Rigidity: Traditional RDBMS 

enforce a fixed schema, where the structure of the 

database must be defined in advance.[41, 42] Modifying 

this schema, such as adding new columns or changing 

relationships, can be a cumbersome process, often 

requiring downtime or significant changes to existing 

applications. This lack of flexibility is a major drawback 

in fast-evolving environments that demand agile data 

structures.[41] 

• Performance Bottlenecks with Complex Joins: In 

relational databases, operations involving complex joins 

across multiple tables can lead to severe performance 

degradation.[41, 42] As the number of tables and the 

complexity of relationships increase, query execution 

time rises significantly, especially with large 

datasets.[41] 

• Concurrency Issues: Managing data concurrency 

when multiple users or applications simultaneously 

access and modify the database can be challenging.[41] 

Locking mechanisms, while ensuring data consistency, 

can lead to performance degradation under heavy 

load.[41] 

• Limited Support for Unstructured Data: RDBMS 

are primarily designed for structured data and are not 

well-suited for handling unstructured or semi-structured 

data like images, documents, or JSON objects.[41] While 

some RDBMS offer specialized data types for such 

content, they are generally less efficient than NoSQL 

databases for these workloads.[41] 

C. Challenges of NoSQL Databases 

While NoSQL databases offered a compelling solution to 

the scalability limitations of RDBMS, they introduced 

their own set of challenges, particularly concerning data 

consistency and reliability: 

• Relaxed Consistency Models: Most NoSQL 

databases prioritize availability and partition tolerance 

over strong consistency, adhering to the CAP 

theorem.[43] This often results in "eventual consistency," 

where data might not be immediately synchronized 

across all nodes.[43] While beneficial for high 

availability and low-latency responses, this model is 

unsuitable for applications that require strict transactional 

integrity, such as financial transactions or healthcare 

applications.[43, 46] 

• Complexity in Maintaining Data Consistency: 

The eventual consistency model of NoSQL can create 

significant challenges for applications that demand real-

time consistency.[43] Developers often need to 

implement additional application-level logic to handle 

data synchronization and resolve conflicts, which 

complicates development for critical systems.[43] 
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• Lack of Standardized Query Language: Unlike 

SQL for RDBMS, NoSQL databases typically lack a 

single, universally adopted query language. Each NoSQL 

database often has its own unique API or query language, 

increasing the learning curve and hindering 

interoperability across different NoSQL solutions. 

• Limited Support for Complex Queries: While 

NoSQL excels at simple key-value lookups or document 

retrievals, performing complex analytical queries, multi-

table joins, or aggregations can be challenging or 

inefficient compared to SQL.[52] 

D. Advantages of NewSQL DBMSs 

NewSQL databases represent a strategic evolution, 

combining the strengths of traditional RDBMS and 

NoSQL systems to address the demands of modern 

applications. Their key advantages include: 

• SQL Compatibility with Scalability: NewSQL 

systems are designed to retain full SQL support while 

overcoming the performance and scalability limitations 

of conventional SQL databases.[38, 39, 40] They 

introduce distributed, scalable architectures that allow for 

horizontal scaling, efficiently distributing workloads 

across multiple nodes without sacrificing SQL 

functionality.[39] 

• Full ACID Compliance: Unlike many NoSQL 

databases, NewSQL systems maintain full ACID 

guarantees (Atomicity, Consistency, Isolation, 

Durability) even in distributed environments.[38, 39, 40, 

43, 48] This ensures reliable transaction processing and 

strong data consistency, critical for applications like 

financial systems and e-commerce platforms.[45] 

• Distributed, Shared-Nothing Architecture: 

NewSQL databases typically adopt a shared-nothing 

architecture, where each node operates independently 

without sharing memory or disk with other nodes.[39] 

This design eliminates single points of contention, 

making them ideal for handling big data workloads and 

ensuring high availability.[39] Data is partitioned across 

many servers, providing fault tolerance and seamless 

scale-out capabilities.[39] 

• High Availability and Fault Tolerance: Many 

NewSQL databases are built with high availability and 

fault tolerance in mind, utilizing mechanisms such as 

replication and automatic failover to ensure continuous 

data accessibility.[39, 48] Systems like Google Spanner 

exemplify this by providing geographically distributed 

databases that ensure data is always available, even 

across data centers.[39, 48] 

• Hybrid Workload Optimization (HTAP): Some 

NewSQL systems are designed to handle both Online 

Transaction Processing (OLTP) and Online Analytical 

Processing (OLAP) workloads efficiently within a single 

database, a concept known as Hybrid 

Transactional/Analytical Processing (HTAP).[49, 50, 51, 

53] This eliminates the need for separate databases for 

transactional and analytical tasks, simplifying 

architecture and reducing data movement. 

E. Multi-Model Data Support in NewSQL 

The increasing diversity of data types in modern 

enterprises necessitates database systems capable of 

handling multiple data models simultaneously. NewSQL 

DBMSs are evolving to provide robust multi-model 

support, integrating various data paradigms within a 

unified system.[38, 49, 50, 54] This capability allows 

organizations to store and manage heterogeneous 

collections of values—structured, semi-structured, and 

unstructured—in a single database, optimizing for hybrid 

workloads and ensuring continuous data availability.[49, 

50] 

Key aspects of multi-model support in NewSQL include: 

• Relational Data: As their foundation, NewSQL 

systems inherently support the relational model, 

providing strong consistency and integrity guarantees for 

structured data.[49, 50] 

• Document Data (JSON, XML): NewSQL 

databases are increasingly incorporating native support 

for semi-structured data formats like JSON and XML. 

This allows for flexible schemas, where new fields can 

be added without costly migrations, similar to NoSQL 

document stores.[38, 54] 

• Graph-Oriented Data: Some NewSQL systems 

are extending their capabilities to handle graph data, 

enabling the storage and querying of complex 

relationships, which is crucial for applications like social 

networks or recommendation engines.[49, 50] 

• Key-Value and Column-Family Data: While 

often associated with NoSQL, the underlying storage 

layers of some NewSQL databases, like TiKV in TiDB, 

can function as key-value stores, providing high 

performance for specific access patterns.[53, 54] 

• Unified Design Methodology: A comprehensive 

methodological approach for designing multi-model 

databases in NewSQL involves identifying and defining 

heterogeneous collections of values and integrating the 

design processes of relational and NoSQL databases 

across multiple levels of abstraction.[49, 50] This allows 

designers to leverage the Nested Relational Model as a 

"Pivot Model" to automatically generate external 

schemas for virtual NoSQL databases, enabling users to 

interact with the data store as if it were a native NoSQL 

database.[49, 50] 
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F. Storage Architectures: Row-Store, Column-Store, and 

Hybrid 

The internal storage architecture significantly impacts a 

NewSQL DBMS's performance for different workloads. 

The primary layouts include row-store, column-store, 

and hybrid-store.[55] 

• Row-Store: In a row-store, each entity (or 

record) is assigned a dedicated row, and all attributes of 

a tuple are stored contiguously.[55] This layout is highly 

efficient for Online Transaction Processing (OLTP) 

workloads, which typically involve interactive 

transactions like retrieving all attributes from a single 

entity or adding new entities, as the entire row can be 

written in a single operation.[55] However, for analytical 

queries that only need a few columns, row-stores can be 

inefficient due to unnecessary data transfer.[55] 

• Column-Store: Column-oriented database 

systems store tables of tuple attributes contiguously by 

column.[55] This design is highly efficient for Online 

Analytical Processing (OLAP) workloads, such as data 

warehousing, decision support, and business intelligence 

applications, where queries often involve aggregating 

data across many rows but only a few columns.[55, 56] 

Column-stores can perform orders of magnitude better 

than row-stores on analytical workloads.[55] However, 

they are less efficient for write-intensive operations or 

when retrieving entire rows.[55] 

• Hybrid-Store: Recognizing the trade-offs, 

hybrid-store architectures combine both row-store and 

column-store characteristics.[55, 56] This approach 

allows for storing insert and update-intensive data in row-

store components while analytical and historical data 

reside in column-store components.[55] For example, 

StarRocks supports hybrid row-column storage, where 

data is stored in both fashions, enabling high-

concurrency, low-latency point queries and partial 

column updates, while still delivering efficient analytical 

capabilities.[56] This hybrid approach aims to optimize 

for diverse workloads within a single system. 

G. Data Distribution Strategies: Sharding and 

Partitioning 

To achieve horizontal scalability and high availability, 

NewSQL DBMSs employ sophisticated data distribution 

strategies, primarily sharding and partitioning.[40, 43, 

48, 57] While often used interchangeably, they refer to 

distinct levels of data organization: 

• Partitioning: This typically refers to dividing a 

single database (and often a single table) into multiple 

segments called partitions within the same database 

server or cluster node.[57] All partitions remain part of 

one overall database instance, collectively representing 

one logical table split based on a key like date or an ID 

range.[57] Partitioning improves manageability and 

query performance on very large tables by allowing 

queries to scan only relevant segments (partition 

pruning).[57] However, it does not increase the total 

processing power or storage beyond what one server 

provides.[57] 

• Sharding (Horizontal Partitioning): Sharding 

involves distributing portions of the data across multiple 

separate database servers or instances, with each server 

holding a subset of the data known as a shard.[40, 48, 57] 

The primary motivation for sharding is to distribute the 

load, allowing the overall system to handle more users or 

transactions than a single server could.[57] Each shard 

might have the same schema but contains only the rows 

pertaining to a certain portion of the data (e.g., a subset 

of customers based on a shard key).[57] NewSQL 

systems often integrate middleware for automatic and 

transparent sharding, fragmenting tables and indexes 

horizontally and distributing them across geographically 

dispersed servers.[40, 48, 50] While powerful for scaling, 

sharding introduces complexities such as increased 

application complexity, potential for uneven data 

distribution (hotspots), and difficulties with cross-shard 

operations.[57] 

III. Multi-Model Query Processing and Optimization 

A. Unified Query Languages for Multi-Model Data 

The ability to manage diverse data models within a single 

NewSQL DBMS necessitates query languages that can 

seamlessly interact with these varied structures. 

Traditional SQL, designed for strictly relational data, 

requires extensions to handle semi-structured, nested, 

and graph-oriented data effectively. 

• SQL++: This is a prominent SQL extension 

designed to relax SQL's strictness regarding both object 

structure (from flat to nested) and schema (from 

mandatory to optional).[58] SQL++ views relational data 

as a subset of a more flexible object model and naturally 

supports collections of document data (e.g., JSON).[58] 

It provides syntax and semantics to comprehensively 

access, query, and construct nested data while naturally 

composing with standard SQL features.[58] The goal of 

SQL++ is to broaden the scope of SQL itself, making it 

backward-compatible while handling schema-optional 

data.[58] 

• SQL:2016 Extensions: The SQL:2016 standard 

introduced significant enhancements to support JSON 

data, including functions for creating, querying, and 

manipulating JSON documents within a relational 

database context.[1] This allows SQL to interact more 

directly with semi-structured data, blurring the lines 

between traditional relational and document models. 

Furthermore, the upcoming SQL/PGQ (Property Graph 

Queries) standard (ISO/IEC 9075-16:2023) aims to 
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standardize graph query capabilities within SQL, 

enabling direct querying of graph data.[2] These 

extensions allow NewSQL systems to provide a unified 

query interface that can span multiple data models, 

reducing the need for developers to learn different query 

languages for different data types.[38, 52] 

B. Query Optimization Techniques 

Efficient query processing is paramount in multi-model 

NewSQL DBMSs, especially when dealing with large, 

heterogeneous datasets and hybrid workloads. Query 

optimization techniques are crucial for ensuring high 

performance and scalability.[50, 52] 

• Indexing: Creating indexes on frequently queried 

fields is a fundamental technique to improve query 

performance.[52] NewSQL systems support various 

indexing strategies, including traditional B-trees [3] and 

specialized indexes for different data models (e.g., 

inverted indexes for document data or graph indexes for 

graph traversals). Join indexes [4] and materialized views 

[5] can further accelerate complex queries and analytical 

workloads by pre-computing and storing results. 

• Caching and Buffering: Implementing caching 

mechanisms (e.g., Redis or Memcached) helps reduce the 

load on the database by storing frequently accessed data 

in memory, thereby improving data throughput and 

performance.[40, 52] Optimizing cache invalidation 

strategies is essential to ensure data consistency and 

freshness.[52] 

• Query Rewriting and Simplification: Breaking 

down complex queries into simpler, more efficient sub-

queries can significantly improve execution time.[52] 

Query planners and cost optimizers within NewSQL 

systems analyze query structures and data distribution to 

determine the most efficient execution plan, often 

leveraging distributed execution capabilities.[53] 

• Distributed Query Processing: NewSQL 

databases are designed for distributed query execution, 

where queries are fragmented and processed in parallel 

across multiple shards or nodes.[40, 48, 57] This involves 

routing queries to the correct shards based on shard keys 

and handling the aggregation of results from multiple 

nodes.[57] Techniques like partition pruning, where the 

database "cuts away" partitions not needed for a given 

query, further reduce I/O and improve efficiency.[57] 

• Storage Model Optimization: Choosing a data 

storage format optimized for specific use cases, such as 

column-store for analytical queries or row-store for 

transactional workloads, is critical.[52] Hybrid storage 

architectures allow NewSQL to dynamically adapt to 

different query patterns.[55, 56] 

C. Unified Data Access Layer 

A key architectural goal of multi-model NewSQL 

DBMSs is to provide a unified data access layer. This 

layer abstracts away the complexities of underlying 

heterogeneous data models and distributed storage, 

presenting a consistent interface to applications and 

users.[47, 53] 

• Simplified Development: By offering a single 

query language (like an extended SQL) and a consistent 

API, developers can interact with diverse data types 

without needing to learn multiple database-specific 

languages or manage complex data transformations.[38, 

52] This significantly reduces development time and 

effort. 

• Data Silo Elimination: A unified access layer 

helps eliminate data silos, where different data types are 

isolated in separate, specialized databases.[47] This 

integration fosters a more holistic view of enterprise data 

and enables cross-model queries that were previously 

difficult or impossible. 

• Hybrid Workload Support: The unified layer 

facilitates Hybrid Transactional/Analytical Processing 

(HTAP) by allowing both OLTP and OLAP queries to 

run efficiently against the same data store, regardless of 

its underlying multi-model structure.[53] This is 

achieved through sophisticated query routing and 

optimization that leverages the appropriate storage and 

processing mechanisms for each query. 

• Interoperability: The goal is to provide a 

platform where various workloads, such as data 

warehousing and machine learning, can be supported on 

a unified platform.[47] This includes the ability to query 

SQL, NoSQL, and NewSQL data from a single platform, 

enhancing overall system versatility.[38] 

IV. Performance Evaluation and Future Outlook 

A. Performance Evaluation for Big Data Workloads 

Evaluating the performance of multi-model NewSQL 

DBMSs for big data workloads is crucial to validate their 

effectiveness in real-world scenarios. These evaluations 

typically focus on their ability to handle hybrid 

transactional and analytical processing (HTAP) 

efficiently, as well as their scalability under increasing 

data volumes and user loads.[49, 50, 51] 

• Benchmarking: Performance is often assessed 

through benchmarks that compare NewSQL databases 

against traditional RDBMS (e.g., MySQL) in cloud 

environments.[59] These comparisons measure response 

times under various workload configurations, including 

different mixes of read/write operations and query 

complexities.[59] 

• Scalability Metrics: Key metrics include 
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throughput (transactions per second), latency (response 

time for queries), and the ability to maintain performance 

as the number of nodes or data volume increases.[39, 52] 

NewSQL systems are expected to demonstrate linear 

scalability, where performance increases proportionally 

with added resources. 

• Hybrid Workload Performance: Evaluations 

specifically test the system's capability to handle 

concurrent transactional and analytical queries without 

significant degradation in either. This is a core promise 

of HTAP-enabled NewSQL databases.[49, 50, 51] 

B. Limitations and Open Issues 

Despite their significant advancements, multi-model 

NewSQL DBMSs still face several limitations and open 

issues that require ongoing research and development: 

• Increased Design Complexity: The integration of 

multiple data models and distributed architectures 

inherently increases the complexity of database 

design.[50] Designers must make intricate choices 

regarding storage models, access paths, and sharding 

strategies to optimize for diverse workloads, which can 

be challenging.[49, 50] 

• Data Distribution Challenges: While sharding 

enables horizontal scalability, it introduces complexities 

such as potential for uneven data distribution (hotspots) 

and difficulties with cross-shard operations.[43, 48, 57] 

Ensuring consistent data synchronization across multiple 

servers in a distributed environment is difficult due to 

network latency, server failures, and replication delays, 

potentially leading to temporary inconsistencies.[48] 

• Learning Curve and Compatibility Issues: The 

relative novelty of NewSQL technologies means that 

each new implementation may require a non-overlapping 

learning curve for developers and administrators.[45] 

Furthermore, compatibility issues with existing data 

models and schemas can lead to considerable migration 

efforts for legacy applications.[45] 

• Usability Concerns: While NewSQL systems 

aim for flexible installation and maintenance, the 

complexity of distributed systems can make query 

formulation difficult for end-users, potentially affecting 

user experience.[60] Improving compiler error messages 

and providing constructive hints for error resolution are 

areas for improvement.[60] 

• Partial Access to Traditional Features: Some 

NewSQL solutions may offer only partial access to the 

rich features available in traditional RDBMS, which 

could be a disadvantage for certain use cases.[54] 

C. Future Research Directions 

The continuous evolution of data management presents 

several promising avenues for future research in multi-

model NewSQL DBMSs: 

• Enhanced Usability and Developer Experience: 

Future research should focus on simplifying the design, 

deployment, and management of multi-model NewSQL 

systems. This includes developing more intuitive tools, 

improving error messaging, and providing better 

guidance for optimizing complex, hybrid workloads.[60] 

• Adaptive Query Optimization: Developing more 

intelligent and adaptive query optimizers that can 

dynamically adjust execution plans based on real-time 

workload characteristics and data distribution patterns is 

crucial. This could involve leveraging AI-driven query 

optimization techniques.[38] 

• Automated Data Model Selection and Mapping: 

Research into automated mechanisms for identifying the 

most suitable data model for specific data types and 

workloads, and for seamlessly mapping between 

different models, would further enhance multi-model 

capabilities. 

• Advanced Consistency Models: Exploring more 

nuanced consistency models beyond strict ACID or 

eventual consistency that can be dynamically tuned to 

specific application requirements, offering a balance 

between performance, availability, and consistency. 

• Serverless and Cloud-Native Architectures: 

Further integration with serverless computing and cloud-

native architectures can enhance the elasticity, cost-

efficiency, and operational simplicity of NewSQL 

deployments.[38] 

• Cross-Model Query Language Standardization: 

Continued efforts to standardize query languages like 

SQL/PGQ [2] and further extend SQL++ will be vital for 

broader adoption and interoperability across multi-model 

NewSQL systems. 

V. CONCLUSION 

The advent of NewSQL DBMSs marks a pivotal moment 

in database technology, effectively bridging the historical 

divide between the strong consistency of traditional 

RDBMS and the horizontal scalability of NoSQL 

databases. This report has underscored the increasing 

necessity for multi-model capabilities within these hybrid 

systems, enabling enterprises to manage the burgeoning 

volume and diversity of data—from structured relational 

tables to flexible JSON documents and intricate graph 

structures—within a single, unified platform. 

We have explored the foundational architectural 

elements that underpin multi-model NewSQL, including 

adaptable storage paradigms (row-store, column-store, 

https://aimjournals.com/index.php/ijmcsit


INTERNATIONAL JOURNAL OF MODERN COMPUTER 

SCIENCE AND IT INNOVATIONS (IJMCSIT) 

https://aimjournals.com/index.php/ijmcsit 

 

 

pg. 17 

and hybrid) and sophisticated data distribution strategies 

(sharding and partitioning). The evolution of query 

languages, particularly SQL++ and the extensions within 

SQL:2016, is critical for providing a unified interface to 

interact with these diverse data models, complemented 

by advanced optimization techniques to ensure high 

performance for complex, hybrid workloads. 

While NewSQL offers compelling advantages for big 

data environments, challenges related to design 

complexity, data distribution, and the learning curve for 

new implementations persist. Addressing these 

limitations through continued research into enhanced 

usability, adaptive query optimization, and further 

standardization will be crucial. Ultimately, the ongoing 

development of multi-model NewSQL DBMSs promises 

to deliver increasingly versatile, efficient, and resilient 

data management solutions, capable of meeting the 

dynamic demands of the modern digital landscape. 
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