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ABSTRACT

The contemporary data landscape, characterized by diverse data types and escalating volumes, has driven a significant
evolution in database management systems. Traditional Relational Database Management Systems (RDBMS) often
struggle with the scalability and flexibility required for modern applications, while NoSQL databases, though
scalable, frequently compromise on transactional consistency. NewSQL systems have emerged as a hybrid solution,
aiming to combine the ACID guarantees of RDBMS with the horizontal scalability of NoSQL. This report explores
the critical need for multi-model capabilities within NewSQL DBMSs to efficiently manage heterogeneous data
adhering to various data models—including relational, document, graph, and key-value—within a single, unified
database. It delves into the architectural considerations for supporting such diversity, examining storage paradigms
like row-store, column-store, and hybrid approaches, alongside data distribution strategies such as sharding and
partitioning. Furthermore, the paper investigates advancements in multi-model query languages, particularly SQL++
and extensions in SQL:2016, and discusses query optimization techniques essential for handling complex, hybrid
workloads. Finally, it addresses the performance evaluation of these systems in big data environments, highlights
current limitations, and outlines future research directions for achieving truly versatile and high-performing data
management solutions.

Keywords: Convergent database architectures, multi-model databases, NewSQL systems, query optimization,
hybrid data models, scalable data management, relational and NoSQL integration, unified query processing, database
performance, modern data architectures.

INTRODUCTION
handling structured data with strong transactional

A. The Evolving Data Landscape and Database
Paradigms

The digital age has ushered in an era of unprecedented
data growth, characterized not only by sheer volume but
also by immense variety. Enterprises today grapple with
structured, semi-structured, and unstructured data,
demanding database solutions that can handle this
heterogeneity while ensuring high performance and
scalability.[38]  Traditional  Relational  Database
Management Systems (RDBMS), which have long
served as the backbone of data management, excel at

https://aimjournals.com/index.php/ijmcsit

integrity (ACID properties: Atomicity, Consistency,
Isolation, Durability).[39, 40] However, their inherent
design, often optimized for vertical scaling (upgrading
existing server hardware), presents significant limitations
when faced with the demands of massive datasets and
high transaction volumes.[41, 42] These limitations
include scalability challenges, fixed schemas that are
difficult to adapt, performance bottlenecks with complex
joins, and complexities in maintaining high availability
in distributed environments.[41, 42]

In response to these challenges, NoSQL (Not only SQL)
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databases emerged as a viable alternative, prioritizing
horizontal scalability and flexibility for unstructured and
semi-structured data.[40, 43, 44, 45] NoSQL databases,
which include document-oriented (e.g., MongoDB), key-
value (e.g., Redis), and column-family (e.g., Cassandra)
stores, can distribute data across multiple nodes, handling
increased workloads and massive data volumes with
relative ease.[43, 44] However, this flexibility often
comes at a cost: many NoSQL systems relax ACID
compliance in favor of availability and partition tolerance
(as per the CAP theorem), leading to eventual
consistency models.[43, 45, 46] This trade-off makes
NoSQL unsuitable for applications requiring strict
transactional integrity, such as financial systems or
healthcare applications, where real-time consistency is
critical.[43, 46]

B. NewSQL.: Bridging the Gap

To bridge the functional gap between the transactional
consistency of SQL and the horizontal scalability of
NoSQL, a new class of database systems, termed
NewSQL, emerged.[38, 39, 40, 42, 43, 44, 45, 47]
NewSQL databases are engineered to combine the best
features of both worlds: they retain the familiar SQL
interface and full ACID compliance of traditional
RDBMS while offering the distributed, scalable
performance typically associated with NoSQL
systems.[38, 39, 40, 42, 43, 45, 47]

Key characteristics of NewSQL systems include:

. SQL Compatibility: They support the widely
used SQL query language, minimizing re-learning and
migration overheads for developers.[38, 39, 45]

. ACID Compliance: They maintain full ACID
guarantees, even in distributed environments, ensuring
reliable transaction processing.[38, 39, 40, 43, 48]

. Distributed,  Shared-Nothing  Architecture:
NewSQL databases typically adopt a distributed system
architecture, partitioning data across multiple nodes to
improve scalability and availability, and ensuring no
single point of contention.[39, 40, 43, 48]

. Horizontal Scalability: They are designed to
scale out seamlessly by adding more servers, distributing
workloads and data across multiple machines.[38, 39, 40,
43, 48]

. High Awvailability and Fault Tolerance:
Mechanisms like replication and automatic failover
ensure continuous data accessibility even in the event of
hardware or network failures.[39, 45]

C. The Imperative for Multi-Model Capabilities in
NewSQL
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The increasing diversity of data types in modern
enterprises necessitates database systems capable of
handling multiple data models simultaneously. NewSQL
DBMSs are evolving to provide robust multi-model
support, integrating various data paradigms within a
unified system.[49, 50] This capability allows
organizations to store and manage heterogeneous
collections of values—structured, semi-structured, and
unstructured—in a single database, optimizing for hybrid
workloads and ensuring continuous data availability.[49,
50]

Key aspects of multi-model support in NewSQL include:

. Relational Data: As their foundation, NewSQL
systems inherently support the relational model,
providing strong consistency and integrity guarantees for
structured data.[49, 50]

. Document Data (JSON, XML): NewSQL
databases are increasingly incorporating native support
for semi-structured data formats like JSON and XML.
This allows for flexible schemas, where new fields can
be added without costly migrations, similar to NoSQL
document stores.[38, 54]

. Graph-Oriented Data: Some NewSQL systems
are extending their capabilities to handle graph data,
enabling the storage and querying of complex
relationships, which is crucial for applications like social
networks or recommendation engines.[49, 50]

. Key-Value and Column-Family Data: While
often associated with NoSQL, the underlying storage
layers of some NewSQL databases, like TiKV in TiDB,
can function as key-value stores, providing high
performance for specific access patterns.[53, 54]

. Unified Design Methodology: A comprehensive
methodological approach for designing multi-model
databases in NewSQL involves identifying and defining
heterogeneous collections of values and integrating the
design processes of relational and NoSQL databases
across multiple levels of abstraction.[49, 50] This allows
designers to leverage the Nested Relational Model as a
"Pivot Model" to automatically generate external
schemas for virtual NoSQL databases, enabling users to
interact with the data store as if it were a native NoSQL
database.[49, 50]

D. Article Structure

The remainder of this article is structured as follows:
Section 1 provides an overview of foundational database
concepts and architectural elements relevant to multi-
model NewSQL systems. Section Il delves into multi-
model query processing and optimization techniques.
Section IV discusses performance evaluation, current
limitations, and future research directions. Finally,
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Section V concludes the paper, summarizing the key
insights and implications.

Il. Foundational and Architectural

Elements

Concepts

A. Evolution of Database Management Systems

The journey of Database Management Systems (DBMS)
has been a continuous adaptation to evolving data needs
and technological advancements.[44] It began with
Hierarchical Databases in the 1960s, organizing data in a
tree-like structure with parent-child relationships,
suitable for specific applications but lacking flexibility
for complex interconnections.[44] The 1970s marked a
significant shift with Relational Database Management
Systems (RDBMS), which store data in tables with well-
defined schemas and introduced SQL (Structured Query
Language) as the standard for querying and managing
data.[44] Popular RDBMS like Oracle, MySQL, and
SQL Server emerged during this era.[44]

As applications became more object-oriented, Object-
Oriented Database Management Systems (OODBMS)
appeared, storing data as objects, but their adoption was
limited by the dominance of RDBMS.[44] The 21st
century witnessed the rise of NoSQL databases, designed
to handle unstructured and semi-structured data, making
them ideal for big data and web applications. NoSQL
encompasses various types, including document-oriented
(e.g., MongoDB), key-value (e.g., Redis), and column-
family (e.g., Cassandra) stores.[44] Subsequently,
NewSQL databases emerged, combining the scalability
of NoSQL with the ACID compliance of RDBMS,
targeting high-performance, transactional
applications.[44] More specialized categories like Graph
Databases, excelling at handling data with complex
relationships (e.g., social networks), and Time-Series
Databases, optimized for time-stamped data (e.g., 10T),
further illustrate the dynamic nature of DBMS
evolution.[44]

B. Limitations of Traditional RDBMS

Despite their long-standing role as the bedrock of data
management, traditional RDBMS face several inherent
limitations that challenge their effectiveness in modern,
data-intensive environments:

. Scalability Challenges: RDBMS typically scale
vertically, meaning that to handle increased workloads,
hardware upgrades (CPU, memory) on a single server are
required.[42] This vertical scaling becomes prohibitively
expensive and eventually hits physical limits when
dealing with extremely large datasets or high transaction
volumes.[41] Horizontal scaling (adding more servers) is
often complicated and requires significant effort to
maintain performance and consistency.[41]
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. Fixed Schema Rigidity: Traditional RDBMS
enforce a fixed schema, where the structure of the
database must be defined in advance.[41, 42] Modifying
this schema, such as adding new columns or changing
relationships, can be a cumbersome process, often
requiring downtime or significant changes to existing
applications. This lack of flexibility is a major drawback
in fast-evolving environments that demand agile data
structures.[41]

. Performance Bottlenecks with Complex Joins: In
relational databases, operations involving complex joins
across multiple tables can lead to severe performance
degradation.[41, 42] As the number of tables and the
complexity of relationships increase, query execution

time rises significantly, especially with large
datasets.[41]
. Concurrency Issues: Managing data concurrency

when multiple users or applications simultaneously
access and modify the database can be challenging.[41]
Locking mechanisms, while ensuring data consistency,
can lead to performance degradation under heavy
load.[41]

. Limited Support for Unstructured Data: RDBMS
are primarily designed for structured data and are not
well-suited for handling unstructured or semi-structured
data like images, documents, or JSON objects.[41] While
some RDBMS offer specialized data types for such
content, they are generally less efficient than NoSQL
databases for these workloads.[41]

C. Challenges of NoSQL Databases

While NoSQL databases offered a compelling solution to
the scalability limitations of RDBMS, they introduced
their own set of challenges, particularly concerning data
consistency and reliability:

. Relaxed Consistency Models: Most NoSQL
databases prioritize availability and partition tolerance
over strong consistency, adhering to the CAP
theorem.[43] This often results in "eventual consistency,"
where data might not be immediately synchronized
across all nodes.[43] While beneficial for high
availability and low-latency responses, this model is
unsuitable for applications that require strict transactional
integrity, such as financial transactions or healthcare
applications.[43, 46]

. Complexity in Maintaining Data Consistency:
The eventual consistency model of NoSQL can create
significant challenges for applications that demand real-
time consistency.[43] Developers often need to
implement additional application-level logic to handle
data synchronization and resolve conflicts, which
complicates development for critical systems.[43]
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. Lack of Standardized Query Language: Unlike
SQL for RDBMS, NoSQL databases typically lack a
single, universally adopted query language. Each NoSQL
database often has its own unique API or query language,
increasing the learning curve and hindering
interoperability across different NoSQL solutions.

. Limited Support for Complex Queries: While
NoSQL excels at simple key-value lookups or document
retrievals, performing complex analytical queries, multi-
table joins, or aggregations can be challenging or
inefficient compared to SQL.[52]

D. Advantages of NewSQL DBMSs

NewSQL databases represent a strategic evolution,
combining the strengths of traditional RDBMS and
NoSQL systems to address the demands of modern
applications. Their key advantages include:

. SQL Compatibility with Scalability: NewSQL
systems are designed to retain full SQL support while
overcoming the performance and scalability limitations
of conventional SQL databases.[38, 39, 40] They
introduce distributed, scalable architectures that allow for
horizontal scaling, efficiently distributing workloads
across multiple nodes without sacrificing SQL
functionality.[39]

. Full ACID Compliance: Unlike many NoSQL
databases, NewSQL systems maintain full ACID
guarantees  (Atomicity,  Consistency, Isolation,
Durability) even in distributed environments.[38, 39, 40,
43, 48] This ensures reliable transaction processing and
strong data consistency, critical for applications like
financial systems and e-commerce platforms.[45]

. Distributed,  Shared-Nothing  Architecture:
NewSQL databases typically adopt a shared-nothing
architecture, where each node operates independently
without sharing memory or disk with other nodes.[39]
This design eliminates single points of contention,
making them ideal for handling big data workloads and
ensuring high availability.[39] Data is partitioned across
many servers, providing fault tolerance and seamless
scale-out capabilities.[39]

. High Availability and Fault Tolerance: Many
NewSQL databases are built with high availability and
fault tolerance in mind, utilizing mechanisms such as
replication and automatic failover to ensure continuous
data accessibility.[39, 48] Systems like Google Spanner
exemplify this by providing geographically distributed
databases that ensure data is always available, even
across data centers.[39, 48]

. Hybrid Workload Optimization (HTAP): Some

NewSQL systems are designed to handle both Online
Transaction Processing (OLTP) and Online Analytical
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Processing (OLAP) workloads efficiently within a single
database, a concept  known as Hybrid
Transactional/Analytical Processing (HTAP).[49, 50, 51,
53] This eliminates the need for separate databases for
transactional and analytical tasks, simplifying
architecture and reducing data movement.

E. Multi-Model Data Support in NewSQL

The increasing diversity of data types in modern
enterprises necessitates database systems capable of
handling multiple data models simultaneously. NewSQL
DBMSs are evolving to provide robust multi-model
support, integrating various data paradigms within a
unified system.[38, 49, 50, 54] This capability allows
organizations to store and manage heterogeneous
collections of values—structured, semi-structured, and
unstructured—in a single database, optimizing for hybrid
workloads and ensuring continuous data availability.[49,
50]

Key aspects of multi-model support in NewSQL include:

. Relational Data: As their foundation, NewSQL
systems inherently support the relational model,
providing strong consistency and integrity guarantees for
structured data.[49, 50]

. Document Data (JSON, XML): NewSQL
databases are increasingly incorporating native support
for semi-structured data formats like JSON and XML.
This allows for flexible schemas, where new fields can
be added without costly migrations, similar to NoSQL
document stores.[38, 54]

. Graph-Oriented Data: Some NewSQL systems
are extending their capabilities to handle graph data,
enabling the storage and querying of complex
relationships, which is crucial for applications like social
networks or recommendation engines.[49, 50]

. Key-Value and Column-Family Data: While
often associated with NoSQL, the underlying storage
layers of some NewSQL databases, like TiKV in TiDB,
can function as key-value stores, providing high
performance for specific access patterns.[53, 54]

. Unified Design Methodology: A comprehensive
methodological approach for designing multi-model
databases in NewSQL involves identifying and defining
heterogeneous collections of values and integrating the
design processes of relational and NoSQL databases
across multiple levels of abstraction.[49, 50] This allows
designers to leverage the Nested Relational Model as a
"Pivot Model" to automatically generate external
schemas for virtual NoSQL databases, enabling users to
interact with the data store as if it were a native NoSQL
database.[49, 50]
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F. Storage Architectures: Row-Store, Column-Store, and
Hybrid

The internal storage architecture significantly impacts a
NewSQL DBMS's performance for different workloads.
The primary layouts include row-store, column-store,
and hybrid-store.[55]

. Row-Store: In a row-store, each entity (or
record) is assigned a dedicated row, and all attributes of
a tuple are stored contiguously.[55] This layout is highly
efficient for Online Transaction Processing (OLTP)
workloads, which typically involve interactive
transactions like retrieving all attributes from a single
entity or adding new entities, as the entire row can be
written in a single operation.[55] However, for analytical
queries that only need a few columns, row-stores can be
inefficient due to unnecessary data transfer.[55]

. Column-Store:  Column-oriented  database
systems store tables of tuple attributes contiguously by
column.[55] This design is highly efficient for Online
Analytical Processing (OLAP) workloads, such as data
warehousing, decision support, and business intelligence
applications, where queries often involve aggregating
data across many rows but only a few columns.[55, 56]
Column-stores can perform orders of magnitude better
than row-stores on analytical workloads.[55] However,
they are less efficient for write-intensive operations or
when retrieving entire rows.[55]

. Hybrid-Store:  Recognizing the trade-offs,
hybrid-store architectures combine both row-store and
column-store characteristics.[55, 56] This approach
allows for storing insert and update-intensive data in row-
store components while analytical and historical data
reside in column-store components.[55] For example,
StarRocks supports hybrid row-column storage, where
data is stored in both fashions, enabling high-
concurrency, low-latency point queries and partial
column updates, while still delivering efficient analytical
capabilities.[56] This hybrid approach aims to optimize
for diverse workloads within a single system.

and

G. Data Distribution

Partitioning

Strategies:  Sharding

To achieve horizontal scalability and high availability,
NewSQL DBMSs employ sophisticated data distribution
strategies, primarily sharding and partitioning.[40, 43,
48, 57] While often used interchangeably, they refer to
distinct levels of data organization:

. Partitioning: This typically refers to dividing a
single database (and often a single table) into multiple
segments called partitions within the same database
server or cluster node.[57] All partitions remain part of
one overall database instance, collectively representing
one logical table split based on a key like date or an ID
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range.[57] Partitioning improves manageability and
query performance on very large tables by allowing
queries to scan only relevant segments (partition
pruning).[57] However, it does not increase the total
processing power or storage beyond what one server
provides.[57]

. Sharding (Horizontal Partitioning): Sharding
involves distributing portions of the data across multiple
separate database servers or instances, with each server
holding a subset of the data known as a shard.[40, 48, 57]
The primary motivation for sharding is to distribute the
load, allowing the overall system to handle more users or
transactions than a single server could.[57] Each shard
might have the same schema but contains only the rows
pertaining to a certain portion of the data (e.g., a subset
of customers based on a shard key).[57] NewSQL
systems often integrate middleware for automatic and
transparent sharding, fragmenting tables and indexes
horizontally and distributing them across geographically
dispersed servers.[40, 48, 50] While powerful for scaling,
sharding introduces complexities such as increased
application complexity, potential for uneven data
distribution (hotspots), and difficulties with cross-shard
operations.[57]

I11. Multi-Model Query Processing and Optimization
A. Unified Query Languages for Multi-Model Data

The ability to manage diverse data models within a single
NewSQL DBMS necessitates query languages that can
seamlessly interact with these varied structures.
Traditional SQL, designed for strictly relational data,
requires extensions to handle semi-structured, nested,
and graph-oriented data effectively.

. SQL++: This is a prominent SQL extension
designed to relax SQL's strictness regarding both object
structure (from flat to nested) and schema (from
mandatory to optional).[58] SQL++ views relational data
as a subset of a more flexible object model and naturally
supports collections of document data (e.g., JSON).[58]
It provides syntax and semantics to comprehensively
access, query, and construct nested data while naturally
composing with standard SQL features.[58] The goal of
SQL++ is to broaden the scope of SQL itself, making it
backward-compatible while handling schema-optional
data.[58]

. SQL:2016 Extensions: The SQL:2016 standard
introduced significant enhancements to support JSON
data, including functions for creating, querying, and
manipulating JSON documents within a relational
database context.[1] This allows SQL to interact more
directly with semi-structured data, blurring the lines
between traditional relational and document models.
Furthermore, the upcoming SQL/PGQ (Property Graph
Queries) standard (ISO/IEC 9075-16:2023) aims to
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standardize graph query capabilities within SQL,
enabling direct querying of graph data.[2] These
extensions allow NewSQL systems to provide a unified
query interface that can span multiple data models,
reducing the need for developers to learn different query
languages for different data types.[38, 52]

B. Query Optimization Techniques

Efficient query processing is paramount in multi-model
NewSQL DBMSs, especially when dealing with large,
heterogeneous datasets and hybrid workloads. Query
optimization techniques are crucial for ensuring high
performance and scalability.[50, 52]

. Indexing: Creating indexes on frequently queried
fields is a fundamental technique to improve query
performance.[52] NewSQL systems support various
indexing strategies, including traditional B-trees [3] and
specialized indexes for different data models (e.g.,
inverted indexes for document data or graph indexes for
graph traversals). Join indexes [4] and materialized views
[5] can further accelerate complex queries and analytical
workloads by pre-computing and storing results.

. Caching and Buffering: Implementing caching
mechanisms (e.g., Redis or Memcached) helps reduce the
load on the database by storing frequently accessed data
in memory, thereby improving data throughput and
performance.[40, 52] Optimizing cache invalidation
strategies is essential to ensure data consistency and
freshness.[52]

. Query Rewriting and Simplification: Breaking
down complex queries into simpler, more efficient sub-
queries can significantly improve execution time.[52]
Query planners and cost optimizers within NewSQL
systems analyze query structures and data distribution to
determine the most efficient execution plan, often
leveraging distributed execution capabilities.[53]

. Distributed Query  Processing:  NewSQL
databases are designed for distributed query execution,
where queries are fragmented and processed in parallel
across multiple shards or nodes.[40, 48, 57] This involves
routing queries to the correct shards based on shard keys
and handling the aggregation of results from multiple
nodes.[57] Techniques like partition pruning, where the
database "cuts away" partitions not needed for a given
query, further reduce 1/0 and improve efficiency.[57]

. Storage Model Optimization: Choosing a data
storage format optimized for specific use cases, such as
column-store for analytical queries or row-store for
transactional workloads, is critical.[52] Hybrid storage
architectures allow NewSQL to dynamically adapt to
different query patterns.[55, 56]

C. Unified Data Access Layer

https://aimjournals.com/index.php/ijmcsit

A key architectural goal of multi-model NewSQL
DBMSs is to provide a unified data access layer. This
layer abstracts away the complexities of underlying
heterogeneous data models and distributed storage,
presenting a consistent interface to applications and
users.[47, 53]

. Simplified Development: By offering a single
query language (like an extended SQL) and a consistent
API, developers can interact with diverse data types
without needing to learn multiple database-specific
languages or manage complex data transformations.[38,
52] This significantly reduces development time and
effort.

. Data Silo Elimination: A unified access layer
helps eliminate data silos, where different data types are
isolated in separate, specialized databases.[47] This
integration fosters a more holistic view of enterprise data
and enables cross-model queries that were previously
difficult or impossible.

. Hybrid Workload Support: The unified layer
facilitates Hybrid Transactional/Analytical Processing
(HTAP) by allowing both OLTP and OLAP queries to
run efficiently against the same data store, regardless of
its underlying multi-model structure.[53] This is
achieved through sophisticated query routing and
optimization that leverages the appropriate storage and
processing mechanisms for each query.

. Interoperability: The goal is to provide a
platform where various workloads, such as data
warehousing and machine learning, can be supported on
a unified platform.[47] This includes the ability to query
SQL, NoSQL, and NewSQL data from a single platform,
enhancing overall system versatility.[38]

1V. Performance Evaluation and Future Outlook
A. Performance Evaluation for Big Data Workloads

Evaluating the performance of multi-model NewSQL
DBMSs for big data workloads is crucial to validate their
effectiveness in real-world scenarios. These evaluations
typically focus on their ability to handle hybrid
transactional and analytical processing (HTAP)
efficiently, as well as their scalability under increasing
data volumes and user loads.[49, 50, 51]

. Benchmarking: Performance is often assessed
through benchmarks that compare NewSQL databases
against traditional RDBMS (e.g., MySQL) in cloud
environments.[59] These comparisons measure response
times under various workload configurations, including
different mixes of read/write operations and query
complexities.[59]

include

. Scalability Metrics: Key metrics
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throughput (transactions per second), latency (response
time for queries), and the ability to maintain performance
as the number of nodes or data volume increases.[39, 52]
NewSQL systems are expected to demonstrate linear
scalability, where performance increases proportionally
with added resources.

. Hybrid Workload Performance: Evaluations
specifically test the system's capability to handle
concurrent transactional and analytical queries without
significant degradation in either. This is a core promise
of HTAP-enabled NewSQL databases.[49, 50, 51]

B. Limitations and Open Issues

Despite their significant advancements, multi-model
NewSQL DBMSs still face several limitations and open
issues that require ongoing research and development:

. Increased Design Complexity: The integration of
multiple data models and distributed architectures
inherently increases the complexity of database
design.[50] Designers must make intricate choices
regarding storage models, access paths, and sharding
strategies to optimize for diverse workloads, which can
be challenging.[49, 50]

. Data Distribution Challenges: While sharding
enables horizontal scalability, it introduces complexities
such as potential for uneven data distribution (hotspots)
and difficulties with cross-shard operations.[43, 48, 57]
Ensuring consistent data synchronization across multiple
servers in a distributed environment is difficult due to
network latency, server failures, and replication delays,
potentially leading to temporary inconsistencies.[48]

. Learning Curve and Compatibility Issues: The
relative novelty of NewSQL technologies means that
each new implementation may require a non-overlapping
learning curve for developers and administrators.[45]
Furthermore, compatibility issues with existing data
models and schemas can lead to considerable migration
efforts for legacy applications.[45]

. Usability Concerns: While NewSQL systems
aim for flexible installation and maintenance, the
complexity of distributed systems can make query
formulation difficult for end-users, potentially affecting
user experience.[60] Improving compiler error messages
and providing constructive hints for error resolution are
areas for improvement.[60]

. Partial Access to Traditional Features: Some
NewSQL solutions may offer only partial access to the
rich features available in traditional RDBMS, which
could be a disadvantage for certain use cases.[54]

C. Future Research Directions
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The continuous evolution of data management presents
several promising avenues for future research in multi-
model NewSQL DBMSs:

. Enhanced Usability and Developer Experience:
Future research should focus on simplifying the design,
deployment, and management of multi-model NewSQL
systems. This includes developing more intuitive tools,
improving error messaging, and providing better
guidance for optimizing complex, hybrid workloads.[60]

. Adaptive Query Optimization: Developing more
intelligent and adaptive query optimizers that can
dynamically adjust execution plans based on real-time
workload characteristics and data distribution patterns is
crucial. This could involve leveraging Al-driven query
optimization techniques.[38]

. Automated Data Model Selection and Mapping:
Research into automated mechanisms for identifying the
most suitable data model for specific data types and
workloads, and for seamlessly mapping between
different models, would further enhance multi-model
capabilities.

. Advanced Consistency Models: Exploring more
nuanced consistency models beyond strict ACID or
eventual consistency that can be dynamically tuned to
specific application requirements, offering a balance
between performance, availability, and consistency.

. Serverless and Cloud-Native Architectures:
Further integration with serverless computing and cloud-
native architectures can enhance the elasticity, cost-
efficiency, and operational simplicity of NewSQL
deployments.[38]

. Cross-Model Query Language Standardization:
Continued efforts to standardize query languages like
SQL/PGQ [2] and further extend SQL++ will be vital for
broader adoption and interoperability across multi-model
NewSQL systems.

V. CONCLUSION

The advent of NewSQL DBMSs marks a pivotal moment
in database technology, effectively bridging the historical
divide between the strong consistency of traditional
RDBMS and the horizontal scalability of NoSQL
databases. This report has underscored the increasing
necessity for multi-model capabilities within these hybrid
systems, enabling enterprises to manage the burgeoning
volume and diversity of data—from structured relational
tables to flexible JSON documents and intricate graph
structures—within a single, unified platform.

We have explored the foundational architectural
elements that underpin multi-model NewSQL, including
adaptable storage paradigms (row-store, column-store,
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and hybrid) and sophisticated data distribution strategies
(sharding and partitioning). The evolution of query
languages, particularly SQL++ and the extensions within
SQL:2016, is critical for providing a unified interface to
interact with these diverse data models, complemented
by advanced optimization techniques to ensure high
performance for complex, hybrid workloads.

While NewSQL offers compelling advantages for big
data environments, challenges related to design
complexity, data distribution, and the learning curve for
new implementations persist. Addressing these
limitations through continued research into enhanced
usability, adaptive query optimization, and further
standardization will be crucial. Ultimately, the ongoing
development of multi-model NewSQL DBMSs promises
to deliver increasingly versatile, efficient, and resilient
data management solutions, capable of meeting the
dynamic demands of the modern digital landscape.
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