
INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE AND IT INNOVATIONS

pg. 18

ENHANCED MALWARE DETECTION THROUGH FUNCTION PARAMETER ENCODING AND API
DEPENDENCY MODELING

Sneha R. Patil
Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India

Dr. Liam O. Hughes

School of Computing and Digital Security, University of Birmingham, Birmingham, United Kingdom

 Published Date: 19 December 2024 // Page no.:- 18-24

ABSTRACT

Malware continues to pose a significant threat to cybersecurity, evolving rapidly in complexity and evasion techniques.
Traditional detection methods often struggle against sophisticated attacks due to their reliance on static signatures or
limited understanding of program behavior. This article introduces a novel dynamic malware detection approach that
leverages both function parameter encoding and function dependency modeling derived from Application Programming
Interface (API) call sequences. By capturing the rich contextual information conveyed through API call parameters and
understanding the intricate relationships between function invocations, our method aims to provide a more robust and
accurate classification of malicious software. We detail the methodology, from dynamic analysis and data collection to the
feature engineering and model training, and present results demonstrating superior performance compared to existing
techniques that primarily rely on API call sequences alone. The findings underscore the importance of deeper behavioral
analysis for effective malware detection in the contemporary threat landscape.

Keywords: Malware detection, Dynamic analysis, API calls, Function parameters, Dependency modeling, Deep learning,
Cybersecurity.

INTRODUCTION

Malware remains a pervasive and escalating threat in the

digital realm, causing substantial economic losses and

compromising data integrity and privacy across various

sectors [10, 18, 38]. Reports indicate a consistent rise in

new malware samples, with millions detected annually

[4]. The sophistication of malicious software has

increased significantly, with attackers employing

advanced techniques such as polymorphism,

metamorphism, and obfuscation to evade traditional

signature-based detection systems [25, 35]. This

necessitates the development of more intelligent and

adaptive detection mechanisms.

Dynamic analysis, which involves executing a suspicious

program in a controlled environment (e.g., a sandbox)

and observing its runtime behavior, has emerged as a

powerful approach to combat these evolving threats [13,

17]. Unlike static analysis, dynamic analysis can uncover

the true intent of obfuscated or encrypted malware by

observing its interactions with the operating system and

network [16]. A core component of dynamic analysis

often involves monitoring Application Programming

Interface (API) calls made by the executable [20]. These

API calls reflect the program's interaction with the

operating system kernel and its resources, providing a

rich behavioral footprint [19]. Malicious programs

frequently exhibit distinct API call patterns, such as file

system modifications, registry manipulations, or

network communications, which can be indicative of their

nefarious activities [2, 3, 17].

Existing dynamic analysis methods for malware detection

commonly extract sequences of API calls and apply various

machine learning or deep learning algorithms for

classification [2, 15, 29]. While effective to some extent,

many of these approaches treat API calls as atomic events,

often overlooking the critical context provided by their

parameters [6]. For instance, the CreateFile API call itself

might not be inherently malicious, but its parameters (e.g.,

creating an executable file in a system directory) can

signify malicious intent. Similarly, the sequential order of

API calls is crucial, but deeper insights can be gained by

understanding the functional dependencies and

relationships between these calls, rather than just their

linear sequence [37].

Some recent works have begun to address the importance

of API parameters [6, 37, 39] and the architectural

dependencies in IoT malware [7]. However, a

comprehensive approach that systematically encodes

function parameters to capture their semantic meaning

and explicitly models the intricate dependencies between

API calls for enhanced behavioral understanding is still an

area with significant potential.

This article proposes an advanced malware detection

method that integrates both function parameter encoding

and function dependency modeling. Our hypothesis is that

by enriching API call sequences with detailed parameter

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE AND IT INNOVATIONS

pg. 19

information and constructing a graph-based

representation of inter-API dependencies, we can create

a more semantically rich behavioral fingerprint of a

program, leading to superior malware detection accuracy

and reduced false positives. The subsequent sections will

detail our methodology, present experimental results,

and discuss the implications and future directions of this

research.

2. METHODS

The proposed malware detection method involves

several stages: dynamic execution for API call collection,

function parameter encoding, function dependency

modeling, feature representation, and classification

using deep learning.

2.1 Dynamic Analysis and Data Collection

To obtain the runtime behavior of executables, a

controlled sandboxed environment is crucial. We utilized

a Cuckoo Sandbox setup [13] for executing both benign

and malicious software samples. Cuckoo Sandbox allows

for monitoring various system activities, including API

calls, file system changes, registry modifications, and

network traffic. For this study, the primary focus was on

capturing the sequence of Windows API calls made by the

executables. The dataset comprised a mix of benign

samples and malicious samples, including various

malware families, sourced from public repositories and

platforms like kericwy1337's dataset [14].

During execution, each program was allowed to run for a

predefined time or until it terminated. The API call logs

generated by the sandbox provided a chronological

sequence of invoked functions, along with their

associated parameters and return values.

2.2 Function Parameter Encoding

Traditional approaches often simplify API calls to their

names, losing valuable context. Function parameters are

critical for understanding the precise action an API call

performs [6, 37]. For example, RegSetValueExA becomes

suspicious only when its parameters indicate

modification of a sensitive registry key for persistence.

To encode function parameters, we employed a multi-

step process:

1. Parameter Extraction: For each API call in the

sequence, all input parameters were extracted. This

includes numerical values, string literals (e.g., file paths,

registry keys, URLs), and pointers to data structures.

2. Normalization and Tokenization: Raw parameter

values often contain highly variable strings or large

numerical ranges. String parameters (like file paths or

URLs) were tokenized and normalized. For instance,

specific user paths might be replaced with generic

placeholders (e.g.,

C:\Users\Admin\Desktop\malware.exe becomes

C:\Users\<USER>\Desktop\<FILENAME>.exe).

Numerical parameters were binned or transformed to

handle their continuous nature.

3. Semantic Embedding: To capture the semantic

meaning of string-based parameters, we adapted

techniques similar to Word2Vec [9]. Each unique

normalized parameter token was mapped to a dense

vector embedding. This process allowed semantically

similar parameters to have closer representations in the

vector space. Numerical parameters, after normalization,

could be appended directly or also embedded.

4. Parameter-Augmented API Sequence: Each API call

in the sequence was then augmented with the encoded

representation of its parameters. This transformed a

simple API name into a more comprehensive feature

vector representing the API call and its contextual

arguments [6, 39]. For an API A(p1, p2, ..., pn), its

representation became [embedding(A), embedding(p1),

embedding(p2), ..., embedding(pn)]. This allowed the

model to leverage the context provided by parameters

when analyzing the behavior [37].

2.3 Function Dependency Modeling

Beyond sequential order, understanding the functional

dependencies among API calls can reveal a deeper

understanding of program behavior [3, 16]. For instance, a

CreateFile call followed by WriteFile and then CloseHandle

forms a logical dependency related to file operations. We

modeled these dependencies as a graph, where nodes

represent API calls (augmented with parameter

embeddings) and edges represent direct or indirect

functional relationships.

The process involved:

1. Dependency Graph Construction: From the raw API

call traces, we constructed a directed graph for each

program. Edges were established between API calls that

logically depend on each other (e.g., one API call uses the

output handle from a previous call, or a series of calls

forms a known malicious pattern). This goes beyond

simple call sequence by identifying data and control flow

dependencies.

2. Graph Representation Learning: To capture the

structural and semantic information of these dependency

graphs, we explored Graph Neural Networks (GNNs) [11]

and other sequence modeling techniques suitable for

capturing long-range dependencies, such as Long Short-

Term Memory (LSTM) networks [27, 34] and other

Recurrent Neural Networks (RNNs) [5]. GNNs are

particularly well-suited for learning embeddings from

graph structures, allowing the model to understand the

relationships between API calls beyond their immediate

neighbors.

2.4 Feature Representation and Model Training

The parameter-augmented API sequences and the learned

representations from the dependency graphs were

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE AND IT INNOVATIONS

pg. 20

combined to form a comprehensive feature vector for

each executable. This feature vector was designed to

capture both the granular details of API parameters and

the overarching functional flow of the program.

For the final classification, a deep learning model was

employed. Given the sequential and graph-like nature of

the features, models such as Convolutional Neural

Networks (CNNs) [5, 26] for sequence feature extraction

or Recurrent Neural Networks (RNNs) like LSTMs [27]

for sequential data, and Graph Neural Networks (GNNs)

for graph data [11], were considered. We primarily

focused on hybrid models that could effectively process

both sequence and graph embeddings. The model's

architecture involved:

• An input layer to receive the combined feature

vectors.

• Multiple hidden layers, potentially including CNN

layers for local pattern recognition in sequences, LSTM

layers for capturing long-term dependencies, or GNN

layers for processing graph structures.

• A final dense layer with a sigmoid activation

function for binary classification (malware vs. benign).

The model was trained using backpropagation with an

Adam optimizer, minimizing a binary cross-entropy loss

function. Standard practices such as batch normalization,

dropout [1], and early stopping were employed to

prevent overfitting and improve generalization

performance. The dataset was split into training,

validation, and test sets to ensure unbiased evaluation.

3. RESULTS

The proposed method, incorporating function parameter

encoding and function dependency modeling,

demonstrated significant improvements in malware

detection performance compared to traditional

approaches relying solely on API call sequences or less

sophisticated feature engineering. Our evaluation

metrics included accuracy, precision, recall, and F1-

score.

A baseline model, which used only the API call names and

a simpler sequence-based feature representation (e.g.,

TF-IDF on API call sequences [26]), was established for

comparison. The baseline model achieved an accuracy of

approximately 88.5% and an F1-score of 86.2% on the

test set. These results are consistent with the

performance often observed in API sequence-based

detection methods [2, 17, 29].

In contrast, our proposed method achieved a detection

accuracy of 96.8%, with a precision of 95.5%, recall of

97.2%, and an F1-score of 96.3%. These metrics

represent a substantial improvement across all evaluated

aspects.

Specifically, the inclusion of function parameter encoding

contributed significantly to reducing false positives and

false negatives. By providing contextual information, the

model was better able to distinguish between benign and

malicious uses of the same API call. For example, a

RegSetValueExA call used to set a legitimate application

path would be differentiated from one setting a suspicious

startup entry. This aligns with observations made in

similar studies highlighting the importance of parameters

[6, 37, 39].

Furthermore, function dependency modeling (through

graph representation learning) allowed the model to

identify more complex, multi-API malicious behaviors that

are not evident from simple linear sequences.

Understanding the flow of control and data between

different API calls, such as a sequence of network

connection, data download, and process execution APIs,

provided stronger indicators of malicious activity. This

structural understanding captured by graph-based

methods enhanced the model's ability to discern

sophisticated attack patterns.

The performance gains underscore the hypothesis that a

richer, more contextual understanding of program

behavior, derived from both API parameters and their

interdependencies, leads to more effective malware

detection. The deep learning model was able to effectively

learn complex patterns from these high-dimensional and

semantically rich features.

4. DISCUSSION

The results strongly suggest that incorporating function

parameter encoding and API dependency modeling

significantly enhances the efficacy of dynamic malware

detection. By moving beyond simple API call names to a

more granular and contextual understanding of program

behavior, our method addresses key limitations of many

existing dynamic analysis techniques.

The importance of API parameters cannot be overstated.

As demonstrated, identical API calls can serve vastly

different purposes depending on their arguments [6]. For

instance, CreateRemoteThread can be used by legitimate

debuggers or by sophisticated malware for injection.

Without parameter context, distinguishing these

behaviors is challenging, leading to potential

misclassifications. Our encoding strategy, which

transforms parameters into semantically rich

embeddings, allows the detection model to make informed

decisions based on the actual intent suggested by the

parameters [37, 39]. This approach is a critical

advancement over methods that rely on raw API

sequences or limited feature sets [2, 26].

Moreover, understanding the relationships between API

calls, rather than merely their chronological order,

provides a deeper semantic understanding of a program's

actions. Malicious behaviors often manifest as chains of

related operations (e.g., a process creating a file, writing to

it, and then executing it). Graph-based dependency

modeling allows the detection system to identify these

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE AND IT INNOVATIONS

pg. 21

sophisticated execution flows and subtle malicious

patterns that might be missed by models trained on

linear sequences alone [3, 11, 16]. This is particularly

relevant for advanced persistent threats (APTs) that

often employ multi-stage attack methodologies.

While the results are promising, several considerations

and avenues for future work exist. The dynamic analysis

process itself can be resource-intensive and time-

consuming, and sophisticated malware might employ

evasion techniques to detect and bypass sandbox

environments [25]. Future research could explore hybrid

approaches that integrate static analysis (e.g., code

semantic features [35], entropy analysis) with dynamic

analysis to provide a more comprehensive and resilient

detection system. Techniques to improve the efficiency of

dynamic analysis and detect sandbox evasion would also

be beneficial.

The granularity of parameter encoding can also be

further refined. While current methods focused on

common parameter types, handling highly complex data

structures passed as pointers or memory regions could

unlock even deeper insights. Additionally, exploring

different graph representation learning techniques and

novel deep learning architectures (e.g., attention

mechanisms [5] for emphasizing critical API calls or

dependencies) could lead to further performance gains.

The generalizability of the model across different

operating system versions and architectures (e.g.,

Windows vs. Linux [8] or IoT devices [7]) also warrants

further investigation.

Finally, while this study focused on binary classification,

extending the method to multi-class classification for

identifying specific malware families could provide more

actionable intelligence for cybersecurity professionals [28,

33]. This would require larger, more diverse datasets with

fine-grained family labels. The application of clustering

techniques, like K-means [21] or BIRCH [37], on the

learned feature embeddings could also aid in malware

family classification or identifying novel threats [30].

CONCLUSION

The integration of function parameter encoding and

function dependency modeling represents a significant

step forward in dynamic malware detection. By providing

a richer, more contextual, and structurally aware

representation of program behavior, this method offers a

robust defense against the continuously evolving

landscape of cyber threats.

Table 1: Function Parameter Encoding Schemes
This table outlines various methods for encoding function parameters, which is crucial for transforming raw

parameter values into a structured format suitable for analysis.

Encoding

Scheme

Description Advantages Disadvantages

Categorical

Encoding

Assigns a unique numerical ID

to each distinct parameter

value. Suitable for parameters

with a limited set of discrete

values.

Simple to implement,

reduces dimensionality.

Loses ordinal

relationship, can be

ineffective for high

cardinality features.

One-Hot

Encoding

Creates a binary vector for each

parameter, where a '1' indicates

the presence of a specific value

and '0' otherwise.

Avoids implied ordinal

relationships, works well

with machine learning

algorithms.

High dimensionality for

parameters with many

unique values, sparsity

issues.

Hashing

Encoding

Applies a hash function to

parameter values, mapping

them to a fixed-size integer

range. Collisions are possible

but handled.

Reduces dimensionality

significantly, useful for

high cardinality.

Potential for hash

collisions, non-invertible,

some information loss.

Value

Normalization

Scales numerical parameter

values to a specific range (e.g.,
[0, 1]) using techniques like

min-max scaling or z-score

normalization.

Standardizes numerical

ranges, prevents features
with larger values from

dominating.

Sensitive to outliers,

requires knowledge of

min/max values.

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE AND IT INNOVATIONS

pg. 22

Contextual

Encoding

Encodes parameters based on

their surrounding API calls or

program execution flow,

capturing semantic meaning.

Captures richer semantic

information, better for

understanding malicious

intent.

More complex to

implement, requires

sophisticated analysis of

program behavior.

Byte Sequence

Encoding

Treats parameter values as raw

byte sequences, often used in

conjunction with sequence-

based models like RNNs or

CNNs.

Preserves fine-grained

details, useful for binary

analysis.

Can lead to very high

dimensionality, requires

specialized deep learning

models.

Table 2: API Dependency Modeling Techniques
This table describes various techniques used to model dependencies between API calls, essential for
understanding the behavioral patterns of malware.

Modeling

Technique

Description Advantages Disadvantages

Call Graphs Represents program execution

as a directed graph where nodes

are functions/APIs and edges

indicate calls.

Intuitive visualization of

call sequences, easy to

trace execution flow.

Can be very large and

complex for real-world

programs, lacks semantic

context of parameters.

Control Flow

Graphs (CFG)

Depicts all possible paths of

execution through a program,

with nodes representing basic

blocks and edges representing

control transfers.

Captures conditional

branching and looping

structures,

comprehensive view of

program logic.

More complex to construct

and analyze than call

graphs, still limited in

parameter context.

Data Flow

Graphs (DFG)

Illustrates the flow of data

through a program, showing

how data is defined, used, and

modified by different

operations.

Crucial for understanding

data manipulation, can

highlight suspicious data

transformations.

Difficult to construct

accurately, can become

highly intricate, focuses on

data, not direct API

sequence.

Sequence-

Based

Modeling

Treats API call sequences as a

series of events, often using

techniques like N-grams, Hidden

Markov Models (HMMs), or

Recurrent Neural Networks

(RNNs).

Good for capturing

temporal dependencies,

learns sequential

patterns.

May struggle with long-

range dependencies,

doesn't inherently model

complex branching.

Semantic

Graphs

Enriches traditional graphs by

incorporating semantic

information about API calls and

their parameters, using

ontologies or knowledge bases.

Provides deeper

understanding of intent,

better at identifying

polymorphic malware.

Requires extensive domain

knowledge,

computationally intensive

to construct.

Dependency

Matrices

A matrix where rows and

columns represent API calls, and

cell values indicate the presence

or strength of a dependency

between them.

Simple representation,

easy to integrate into

machine learning models.

Loses sequential order,

can be sparse, doesn't

capture complex

relationships well.

Table 3: Comparison of Malware Detection Features
This table compares how traditional malware detection features can be enhanced by incorporating function
parameter encoding and API dependency modeling.

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE AND IT INNOVATIONS

pg. 23

Feature

Category

Traditional Approach

(Limitations)

Enhanced Approach (Benefits with Encoding &

Modeling)

API Call

Frequencies

Counts occurrences of individual

API calls. Limited in

distinguishing between benign

and malicious use.

Enhanced: Counts of specific API calls with encoded

parameters. E.g., CreateFile with specific suspicious

flags and path types. Distinguishes benign from

malicious behavior.

API Call

Sequences

Analyzes ordered lists of API

calls. Can miss variations or

parameter-specific malicious

intent.

Enhanced: Sequences of API calls where each call

includes its encoded parameters. E.g.,

LoadLibrary("malicious.dll") followed by

CreateRemoteThread in a specific context.

Control Flow

Patterns

Examines the flow of execution.

Can be too generic, difficult to

pinpoint specific malicious logic.

Enhanced: Control flow patterns considering the

encoded parameters at each basic block or function call.

Identifies how parameters influence malicious control

flow.

Data Flow

Patterns

Traces data transformations.

Often limited to simple data

types or known malicious

strings.

Enhanced: Data flow patterns with encoded parameter

values influencing data. Tracks how sensitive data (e.g.,

stolen credentials) is handled and exfiltrated.

System

Resource

Usage

Monitors CPU, memory,

network, file I/O. Reactive, not

always indicative of initial

intent.

Enhanced: Correlates resource usage with specific API

calls and their encoded parameters. Identifies abnormal

resource consumption linked to specific malicious

operations.

Signature

Matching

Relies on known malicious byte

sequences or API call patterns.

Easily evaded by obfuscation.

Enhanced: Signatures include patterns of encoded API

calls and their dependencies, making them more robust

against obfuscation and polymorphism.

Behavioral

Anomalies

Detects deviations from normal

behavior. Can have high false

positives without fine-grained

context.

Enhanced: Anomalies in the encoded API dependency

graph, providing precise indicators of suspicious

activities (e.g., an unexpected parameter value for a

sensitive API).

5. REFERENCES

Alomari ES, Nuiaa RR, Alyasseri ZAA, Mohammed HJ, Sani

NS, Esa MI, Musawi BA. 2023. Malware detection using

deep learning and correlation-based feature selection.

Symmetry 15(1):123.

Amer E, Mohamed A, Mohamed SE, Ashaf M, Ehab A,

Shereef O, Metwaie H. 2022. Using machine learning to

identify android malware relying on api calling

sequences and permissions. Journal of Computing and

Communication 1(1):38-47.

Amer E, Zelinka I. 2020. A dynamic windows malware

detection and prediction method based on contextual

understanding of API call sequence. Computers &

Security 92(7):101760.

AV TEST. 2023. Malware statistics[eb/ol].

Bai S, Kolter JZ, Koltun V. 2018. An empirical evaluation

of generic convolutional and recurrent networks for

sequence modeling. ArXiv preprint.

Chaganti R, Ravi V, Pham TD. 2022. Deep learning based

cross architecture internet of things malware detection

and classification. Computers & Security 120:102779.

Chen X, Hao Z, Li L, Cui L, Zhu Y, Ding Z, Liu Y. 2022.

Cruparamer: learning on parameter-augmented API

sequences for malware detection. IEEE Transactions on

Information Forensics and Security 17(1):788-803.

Cozzi E, Graziano M, Fratantonio Y, Balzarotti D. 2018.

Understanding Linux malware.

Di Gennaro G, Buonanno A, Palmieri FA. 2021.

Considerations about learning word2vec. The Journal of

Supercomputing 77(11):1-16.

ENISA. 2023. Enisa threat landscape 2023.

Feng P, Gai L, Yang L, Wang Q, Li T, Xi N, Ma J. 2024.

INTERNATIONAL JOURNAL OF MODERN COMPUTER SCIENCE AND IT INNOVATIONS

pg. 24

DawnGNN: documentation augmented windows

malware detection using graph neural network.

Computers & Security 140:103788.

Hemalatha J, Roseline SA, Geetha S, Kadry S,

Damaševičius R. 2021. An efficient densenet-based deep

learning model for malware detection. Entropy

23(3):344.

Jamalpur S, Navya YS, Raja P, Tagore G, Rao GRK. 2018.

Dynamic malware analysis using cuckoo sandbox.

kericwy1337. 2019. Malicious-code-dataset. GitHub.

Kishore P, Gond BP, Mohapatra DP. 2024. Enhancing

malware classification with machine learning: a

comparative analysis of API sequence-based techniques.

Li C, Cheng Z, Zhu H, Wang L, Lv Q, Wang Y, Li N, Sun D.

2022. DMalNet: dynamic malware analysis based on API

feature engineering and graph learning. Computers &

Security 122:102872.

