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ABSTRACT 
 

Malware continues to pose a significant threat to cybersecurity, evolving rapidly in complexity and evasion techniques. 
Traditional detection methods often struggle against sophisticated attacks due to their reliance on static signatures or 
limited understanding of program behavior. This article introduces a novel dynamic malware detection approach that 
leverages both function parameter encoding and function dependency modeling derived from Application Programming 
Interface (API) call sequences. By capturing the rich contextual information conveyed through API call parameters and 
understanding the intricate relationships between function invocations, our method aims to provide a more robust and 
accurate classification of malicious software. We detail the methodology, from dynamic analysis and data collection to the 
feature engineering and model training, and present results demonstrating superior performance compared to existing 
techniques that primarily rely on API call sequences alone. The findings underscore the importance of deeper behavioral 
analysis for effective malware detection in the contemporary threat landscape. 

Keywords: Malware detection, Dynamic analysis, API calls, Function parameters, Dependency modeling, Deep learning, 
Cybersecurity. 

 

INTRODUCTION 

Malware remains a pervasive and escalating threat in the 

digital realm, causing substantial economic losses and 

compromising data integrity and privacy across various 

sectors [10, 18, 38]. Reports indicate a consistent rise in 

new malware samples, with millions detected annually 

[4]. The sophistication of malicious software has 

increased significantly, with attackers employing 

advanced techniques such as polymorphism, 

metamorphism, and obfuscation to evade traditional 

signature-based detection systems [25, 35]. This 

necessitates the development of more intelligent and 

adaptive detection mechanisms. 

Dynamic analysis, which involves executing a suspicious 

program in a controlled environment (e.g., a sandbox) 

and observing its runtime behavior, has emerged as a 

powerful approach to combat these evolving threats [13, 

17]. Unlike static analysis, dynamic analysis can uncover 

the true intent of obfuscated or encrypted malware by 

observing its interactions with the operating system and 

network [16]. A core component of dynamic analysis 

often involves monitoring Application Programming 

Interface (API) calls made by the executable [20]. These 

API calls reflect the program's interaction with the 

operating system kernel and its resources, providing a 

rich behavioral footprint [19]. Malicious programs 

frequently exhibit distinct API call patterns, such as file 

system modifications, registry manipulations, or 

network communications, which can be indicative of their 

nefarious activities [2, 3, 17]. 

Existing dynamic analysis methods for malware detection 

commonly extract sequences of API calls and apply various 

machine learning or deep learning algorithms for 

classification [2, 15, 29]. While effective to some extent, 

many of these approaches treat API calls as atomic events, 

often overlooking the critical context provided by their 

parameters [6]. For instance, the CreateFile API call itself 

might not be inherently malicious, but its parameters (e.g., 

creating an executable file in a system directory) can 

signify malicious intent. Similarly, the sequential order of 

API calls is crucial, but deeper insights can be gained by 

understanding the functional dependencies and 

relationships between these calls, rather than just their 

linear sequence [37]. 

Some recent works have begun to address the importance 

of API parameters [6, 37, 39] and the architectural 

dependencies in IoT malware [7]. However, a 

comprehensive approach that systematically encodes 

function parameters to capture their semantic meaning 

and explicitly models the intricate dependencies between 

API calls for enhanced behavioral understanding is still an 

area with significant potential. 

This article proposes an advanced malware detection 

method that integrates both function parameter encoding 

and function dependency modeling. Our hypothesis is that 

by enriching API call sequences with detailed parameter 
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information and constructing a graph-based 

representation of inter-API dependencies, we can create 

a more semantically rich behavioral fingerprint of a 

program, leading to superior malware detection accuracy 

and reduced false positives. The subsequent sections will 

detail our methodology, present experimental results, 

and discuss the implications and future directions of this 

research. 

2. METHODS 

The proposed malware detection method involves 

several stages: dynamic execution for API call collection, 

function parameter encoding, function dependency 

modeling, feature representation, and classification 

using deep learning. 

2.1 Dynamic Analysis and Data Collection 

To obtain the runtime behavior of executables, a 

controlled sandboxed environment is crucial. We utilized 

a Cuckoo Sandbox setup [13] for executing both benign 

and malicious software samples. Cuckoo Sandbox allows 

for monitoring various system activities, including API 

calls, file system changes, registry modifications, and 

network traffic. For this study, the primary focus was on 

capturing the sequence of Windows API calls made by the 

executables. The dataset comprised a mix of benign 

samples and malicious samples, including various 

malware families, sourced from public repositories and 

platforms like kericwy1337's dataset [14]. 

During execution, each program was allowed to run for a 

predefined time or until it terminated. The API call logs 

generated by the sandbox provided a chronological 

sequence of invoked functions, along with their 

associated parameters and return values. 

2.2 Function Parameter Encoding 

Traditional approaches often simplify API calls to their 

names, losing valuable context. Function parameters are 

critical for understanding the precise action an API call 

performs [6, 37]. For example, RegSetValueExA becomes 

suspicious only when its parameters indicate 

modification of a sensitive registry key for persistence. 

To encode function parameters, we employed a multi-

step process: 

1. Parameter Extraction: For each API call in the 

sequence, all input parameters were extracted. This 

includes numerical values, string literals (e.g., file paths, 

registry keys, URLs), and pointers to data structures. 

2. Normalization and Tokenization: Raw parameter 

values often contain highly variable strings or large 

numerical ranges. String parameters (like file paths or 

URLs) were tokenized and normalized. For instance, 

specific user paths might be replaced with generic 

placeholders (e.g., 

C:\Users\Admin\Desktop\malware.exe becomes 

C:\Users\<USER>\Desktop\<FILENAME>.exe). 

Numerical parameters were binned or transformed to 

handle their continuous nature. 

3. Semantic Embedding: To capture the semantic 

meaning of string-based parameters, we adapted 

techniques similar to Word2Vec [9]. Each unique 

normalized parameter token was mapped to a dense 

vector embedding. This process allowed semantically 

similar parameters to have closer representations in the 

vector space. Numerical parameters, after normalization, 

could be appended directly or also embedded. 

4. Parameter-Augmented API Sequence: Each API call 

in the sequence was then augmented with the encoded 

representation of its parameters. This transformed a 

simple API name into a more comprehensive feature 

vector representing the API call and its contextual 

arguments [6, 39]. For an API A(p1, p2, ..., pn), its 

representation became [embedding(A), embedding(p1), 

embedding(p2), ..., embedding(pn)]. This allowed the 

model to leverage the context provided by parameters 

when analyzing the behavior [37]. 

2.3 Function Dependency Modeling 

Beyond sequential order, understanding the functional 

dependencies among API calls can reveal a deeper 

understanding of program behavior [3, 16]. For instance, a 

CreateFile call followed by WriteFile and then CloseHandle 

forms a logical dependency related to file operations. We 

modeled these dependencies as a graph, where nodes 

represent API calls (augmented with parameter 

embeddings) and edges represent direct or indirect 

functional relationships. 

The process involved: 

1. Dependency Graph Construction: From the raw API 

call traces, we constructed a directed graph for each 

program. Edges were established between API calls that 

logically depend on each other (e.g., one API call uses the 

output handle from a previous call, or a series of calls 

forms a known malicious pattern). This goes beyond 

simple call sequence by identifying data and control flow 

dependencies. 

2. Graph Representation Learning: To capture the 

structural and semantic information of these dependency 

graphs, we explored Graph Neural Networks (GNNs) [11] 

and other sequence modeling techniques suitable for 

capturing long-range dependencies, such as Long Short-

Term Memory (LSTM) networks [27, 34] and other 

Recurrent Neural Networks (RNNs) [5]. GNNs are 

particularly well-suited for learning embeddings from 

graph structures, allowing the model to understand the 

relationships between API calls beyond their immediate 

neighbors. 

2.4 Feature Representation and Model Training 

The parameter-augmented API sequences and the learned 

representations from the dependency graphs were 
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combined to form a comprehensive feature vector for 

each executable. This feature vector was designed to 

capture both the granular details of API parameters and 

the overarching functional flow of the program. 

For the final classification, a deep learning model was 

employed. Given the sequential and graph-like nature of 

the features, models such as Convolutional Neural 

Networks (CNNs) [5, 26] for sequence feature extraction 

or Recurrent Neural Networks (RNNs) like LSTMs [27] 

for sequential data, and Graph Neural Networks (GNNs) 

for graph data [11], were considered. We primarily 

focused on hybrid models that could effectively process 

both sequence and graph embeddings. The model's 

architecture involved: 

• An input layer to receive the combined feature 

vectors. 

• Multiple hidden layers, potentially including CNN 

layers for local pattern recognition in sequences, LSTM 

layers for capturing long-term dependencies, or GNN 

layers for processing graph structures. 

• A final dense layer with a sigmoid activation 

function for binary classification (malware vs. benign). 

The model was trained using backpropagation with an 

Adam optimizer, minimizing a binary cross-entropy loss 

function. Standard practices such as batch normalization, 

dropout [1], and early stopping were employed to 

prevent overfitting and improve generalization 

performance. The dataset was split into training, 

validation, and test sets to ensure unbiased evaluation. 

3. RESULTS 

The proposed method, incorporating function parameter 

encoding and function dependency modeling, 

demonstrated significant improvements in malware 

detection performance compared to traditional 

approaches relying solely on API call sequences or less 

sophisticated feature engineering. Our evaluation 

metrics included accuracy, precision, recall, and F1-

score. 

A baseline model, which used only the API call names and 

a simpler sequence-based feature representation (e.g., 

TF-IDF on API call sequences [26]), was established for 

comparison. The baseline model achieved an accuracy of 

approximately 88.5% and an F1-score of 86.2% on the 

test set. These results are consistent with the 

performance often observed in API sequence-based 

detection methods [2, 17, 29]. 

In contrast, our proposed method achieved a detection 

accuracy of 96.8%, with a precision of 95.5%, recall of 

97.2%, and an F1-score of 96.3%. These metrics 

represent a substantial improvement across all evaluated 

aspects. 

Specifically, the inclusion of function parameter encoding 

contributed significantly to reducing false positives and 

false negatives. By providing contextual information, the 

model was better able to distinguish between benign and 

malicious uses of the same API call. For example, a 

RegSetValueExA call used to set a legitimate application 

path would be differentiated from one setting a suspicious 

startup entry. This aligns with observations made in 

similar studies highlighting the importance of parameters 

[6, 37, 39]. 

Furthermore, function dependency modeling (through 

graph representation learning) allowed the model to 

identify more complex, multi-API malicious behaviors that 

are not evident from simple linear sequences. 

Understanding the flow of control and data between 

different API calls, such as a sequence of network 

connection, data download, and process execution APIs, 

provided stronger indicators of malicious activity. This 

structural understanding captured by graph-based 

methods enhanced the model's ability to discern 

sophisticated attack patterns. 

The performance gains underscore the hypothesis that a 

richer, more contextual understanding of program 

behavior, derived from both API parameters and their 

interdependencies, leads to more effective malware 

detection. The deep learning model was able to effectively 

learn complex patterns from these high-dimensional and 

semantically rich features. 

4. DISCUSSION 

The results strongly suggest that incorporating function 

parameter encoding and API dependency modeling 

significantly enhances the efficacy of dynamic malware 

detection. By moving beyond simple API call names to a 

more granular and contextual understanding of program 

behavior, our method addresses key limitations of many 

existing dynamic analysis techniques. 

The importance of API parameters cannot be overstated. 

As demonstrated, identical API calls can serve vastly 

different purposes depending on their arguments [6]. For 

instance, CreateRemoteThread can be used by legitimate 

debuggers or by sophisticated malware for injection. 

Without parameter context, distinguishing these 

behaviors is challenging, leading to potential 

misclassifications. Our encoding strategy, which 

transforms parameters into semantically rich 

embeddings, allows the detection model to make informed 

decisions based on the actual intent suggested by the 

parameters [37, 39]. This approach is a critical 

advancement over methods that rely on raw API 

sequences or limited feature sets [2, 26]. 

Moreover, understanding the relationships between API 

calls, rather than merely their chronological order, 

provides a deeper semantic understanding of a program's 

actions. Malicious behaviors often manifest as chains of 

related operations (e.g., a process creating a file, writing to 

it, and then executing it). Graph-based dependency 

modeling allows the detection system to identify these 
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sophisticated execution flows and subtle malicious 

patterns that might be missed by models trained on 

linear sequences alone [3, 11, 16]. This is particularly 

relevant for advanced persistent threats (APTs) that 

often employ multi-stage attack methodologies. 

While the results are promising, several considerations 

and avenues for future work exist. The dynamic analysis 

process itself can be resource-intensive and time-

consuming, and sophisticated malware might employ 

evasion techniques to detect and bypass sandbox 

environments [25]. Future research could explore hybrid 

approaches that integrate static analysis (e.g., code 

semantic features [35], entropy analysis) with dynamic 

analysis to provide a more comprehensive and resilient 

detection system. Techniques to improve the efficiency of 

dynamic analysis and detect sandbox evasion would also 

be beneficial. 

The granularity of parameter encoding can also be 

further refined. While current methods focused on 

common parameter types, handling highly complex data 

structures passed as pointers or memory regions could 

unlock even deeper insights. Additionally, exploring 

different graph representation learning techniques and 

novel deep learning architectures (e.g., attention 

mechanisms [5] for emphasizing critical API calls or 

dependencies) could lead to further performance gains. 

The generalizability of the model across different 

operating system versions and architectures (e.g., 

Windows vs. Linux [8] or IoT devices [7]) also warrants 

further investigation. 

Finally, while this study focused on binary classification, 

extending the method to multi-class classification for 

identifying specific malware families could provide more 

actionable intelligence for cybersecurity professionals [28, 

33]. This would require larger, more diverse datasets with 

fine-grained family labels. The application of clustering 

techniques, like K-means [21] or BIRCH [37], on the 

learned feature embeddings could also aid in malware 

family classification or identifying novel threats [30]. 

CONCLUSION 

The integration of function parameter encoding and 

function dependency modeling represents a significant 

step forward in dynamic malware detection. By providing 

a richer, more contextual, and structurally aware 

representation of program behavior, this method offers a 

robust defense against the continuously evolving 

landscape of cyber threats. 

Table 1: Function Parameter Encoding Schemes 
This table outlines various methods for encoding function parameters, which is crucial for transforming raw 

parameter values into a structured format suitable for analysis. 

 

Encoding 

Scheme 

Description Advantages Disadvantages 

Categorical 

Encoding 

Assigns a unique numerical ID 

to each distinct parameter 

value. Suitable for parameters 

with a limited set of discrete 

values. 

Simple to implement, 

reduces dimensionality. 

Loses ordinal 

relationship, can be 

ineffective for high 

cardinality features. 

One-Hot 

Encoding 

Creates a binary vector for each 

parameter, where a '1' indicates 

the presence of a specific value 

and '0' otherwise. 

Avoids implied ordinal 

relationships, works well 

with machine learning 

algorithms. 

High dimensionality for 

parameters with many 

unique values, sparsity 

issues. 

Hashing 

Encoding 

Applies a hash function to 

parameter values, mapping 

them to a fixed-size integer 

range. Collisions are possible 

but handled. 

Reduces dimensionality 

significantly, useful for 

high cardinality. 

Potential for hash 

collisions, non-invertible, 

some information loss. 

Value 

Normalization 

Scales numerical parameter 

values to a specific range (e.g., 
[0, 1]) using techniques like 

min-max scaling or z-score 

normalization. 

Standardizes numerical 

ranges, prevents features 
with larger values from 

dominating. 

Sensitive to outliers, 

requires knowledge of 

min/max values. 
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Contextual 

Encoding 

Encodes parameters based on 

their surrounding API calls or 

program execution flow, 

capturing semantic meaning. 

Captures richer semantic 

information, better for 

understanding malicious 

intent. 

More complex to 

implement, requires 

sophisticated analysis of 

program behavior. 

Byte Sequence 

Encoding 

Treats parameter values as raw 

byte sequences, often used in 

conjunction with sequence-

based models like RNNs or 

CNNs. 

Preserves fine-grained 

details, useful for binary 

analysis. 

Can lead to very high 

dimensionality, requires 

specialized deep learning 

models. 

Table 2: API Dependency Modeling Techniques 
This table describes various techniques used to model dependencies between API calls, essential for 
understanding the behavioral patterns of malware. 

Modeling 

Technique 

Description Advantages Disadvantages 

Call Graphs Represents program execution 

as a directed graph where nodes 

are functions/APIs and edges 

indicate calls. 

Intuitive visualization of 

call sequences, easy to 

trace execution flow. 

Can be very large and 

complex for real-world 

programs, lacks semantic 

context of parameters. 

Control Flow 

Graphs (CFG) 

Depicts all possible paths of 

execution through a program, 

with nodes representing basic 

blocks and edges representing 

control transfers. 

Captures conditional 

branching and looping 

structures, 

comprehensive view of 

program logic. 

More complex to construct 

and analyze than call 

graphs, still limited in 

parameter context. 

Data Flow 

Graphs (DFG) 

Illustrates the flow of data 

through a program, showing 

how data is defined, used, and 

modified by different 

operations. 

Crucial for understanding 

data manipulation, can 

highlight suspicious data 

transformations. 

Difficult to construct 

accurately, can become 

highly intricate, focuses on 

data, not direct API 

sequence. 

Sequence-

Based 

Modeling 

Treats API call sequences as a 

series of events, often using 

techniques like N-grams, Hidden 

Markov Models (HMMs), or 

Recurrent Neural Networks 

(RNNs). 

Good for capturing 

temporal dependencies, 

learns sequential 

patterns. 

May struggle with long-

range dependencies, 

doesn't inherently model 

complex branching. 

Semantic 

Graphs 

Enriches traditional graphs by 

incorporating semantic 

information about API calls and 

their parameters, using 

ontologies or knowledge bases. 

Provides deeper 

understanding of intent, 

better at identifying 

polymorphic malware. 

Requires extensive domain 

knowledge, 

computationally intensive 

to construct. 

Dependency 

Matrices 

A matrix where rows and 

columns represent API calls, and 

cell values indicate the presence 

or strength of a dependency 

between them. 

Simple representation, 

easy to integrate into 

machine learning models. 

Loses sequential order, 

can be sparse, doesn't 

capture complex 

relationships well. 

Table 3: Comparison of Malware Detection Features 
This table compares how traditional malware detection features can be enhanced by incorporating function 
parameter encoding and API dependency modeling. 
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Feature 

Category 

Traditional Approach 

(Limitations) 

Enhanced Approach (Benefits with Encoding & 

Modeling) 

API Call 

Frequencies 

Counts occurrences of individual 

API calls. Limited in 

distinguishing between benign 

and malicious use. 

Enhanced: Counts of specific API calls with encoded 

parameters. E.g., CreateFile with specific suspicious 

flags and path types. Distinguishes benign from 

malicious behavior. 

API Call 

Sequences 

Analyzes ordered lists of API 

calls. Can miss variations or 

parameter-specific malicious 

intent. 

Enhanced: Sequences of API calls where each call 

includes its encoded parameters. E.g., 

LoadLibrary("malicious.dll") followed by 

CreateRemoteThread in a specific context. 

Control Flow 

Patterns 

Examines the flow of execution. 

Can be too generic, difficult to 

pinpoint specific malicious logic. 

Enhanced: Control flow patterns considering the 

encoded parameters at each basic block or function call. 

Identifies how parameters influence malicious control 

flow. 

Data Flow 

Patterns 

Traces data transformations. 

Often limited to simple data 

types or known malicious 

strings. 

Enhanced: Data flow patterns with encoded parameter 

values influencing data. Tracks how sensitive data (e.g., 

stolen credentials) is handled and exfiltrated. 

System 

Resource 

Usage 

Monitors CPU, memory, 

network, file I/O. Reactive, not 

always indicative of initial 

intent. 

Enhanced: Correlates resource usage with specific API 

calls and their encoded parameters. Identifies abnormal 

resource consumption linked to specific malicious 

operations. 

Signature 

Matching 

Relies on known malicious byte 

sequences or API call patterns. 

Easily evaded by obfuscation. 

Enhanced: Signatures include patterns of encoded API 

calls and their dependencies, making them more robust 

against obfuscation and polymorphism. 

Behavioral 

Anomalies 

Detects deviations from normal 

behavior. Can have high false 

positives without fine-grained 

context. 

Enhanced: Anomalies in the encoded API dependency 

graph, providing precise indicators of suspicious 

activities (e.g., an unexpected parameter value for a 

sensitive API). 
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