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ABSTRACT 
 

Confirmation bias in deep learning arises when models trained on datasets with noisy labels tend to reinforce incorrect 
predictions, leading to suboptimal learning and reduced generalization performance. This paper proposes a collaborative 
network training framework to mitigate confirmation bias in the presence of label noise. In the proposed method, two 
networks are trained simultaneously, each selecting clean samples for the other to learn from. This cross-training strategy 
prevents individual networks from overfitting to noisy labels and helps preserve model diversity. The framework also 
incorporates a sample agreement mechanism and consistency regularization to further stabilize training and improve 
robustness. Experimental evaluations on benchmark datasets including CIFAR-10, CIFAR-100, and Clothing1M show that 
the proposed approach outperforms existing noise-robust training methods, achieving higher accuracy and better noise 
tolerance. The results validate the effectiveness of collaborative learning in reducing confirmation bias and improving 
model reliability under label noise. 
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INTRODUCTION 

Deep Neural Networks (DNNs) have achieved 

remarkable success across diverse applications, from 

computer vision and natural language processing to 

speech recognition, primarily due to their ability to learn 

complex patterns from vast amounts of data [17, 20, 21, 

22, 23, 24, 35, 53, 54, 55, 56, 57, 73, 74, 75, 76, 77, 78]. 

However, the performance of these data-hungry models 

heavily relies on the availability of high-quality, 

accurately labeled datasets. In real-world scenarios, 

collecting perfectly clean data is often impractical, costly, 

and time-consuming, leading to the prevalence of noisy 

labels [46, 69, 71]. Label noise refers to inaccuracies or 

errors in the assigned class labels within a dataset, which 

can arise from various sources such as human annotation 

errors, automatic labeling processes, sensor 

malfunctions, or ambiguities in data interpretation [46]. 

The presence of noisy labels poses a significant challenge 

for deep learning models, as DNNs possess a strong 

capacity to memorize training data, including mislabeled 

examples [3, 14, 81]. This phenomenon leads to 

confirmation bias, where the model inadvertently fits the 

noise in the labels, becoming overly confident in 

incorrect classifications. Consequently, training on noisy 

data results in models that exhibit poor generalization 

performance on unseen, clean data, undermining their 

reliability and practical utility [3, 14]. This is particularly 

problematic in applications requiring high precision and 

robustness, such as medical diagnosis or autonomous 

systems. 

Traditional approaches to mitigate label noise often 

involve explicit noise modeling, robust loss functions, or 

sample weighting based on label confidence [2, 12, 41, 48, 

87]. While these methods offer some improvements, they 

frequently struggle with high noise rates, instance-

dependent noise [69, 92], or require prior knowledge of 

the noise distribution. More recently, the concept of two-

network collaboration has emerged as a promising 

paradigm to alleviate confirmation bias in learning with 

noisy labels. This approach leverages the synergistic 

interaction between multiple neural networks to 

collectively identify and correct noisy samples, or to 

provide robust supervision, thereby reducing the models' 

tendency to memorize incorrect labels. By fostering a 

collaborative learning environment, these methods aim to 

distill cleaner information from corrupted datasets and 

enhance the generalization capabilities of deep learning 

models. 

This article provides a comprehensive overview of various 

two-network collaboration strategies designed to combat 

confirmation bias in the presence of noisy labels. We delve 

into the underlying methodologies, discuss their 

advantages over single-network approaches, evaluate 

their performance on benchmark datasets, and highlight 

the challenges and future directions in this rapidly 

evolving field. 
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METHODS 

To effectively mitigate confirmation bias in deep learning 

when confronted with noisy labels, two-network 

collaboration frameworks typically employ sophisticated 

strategies for sample selection, robust learning, and 

inter-network communication. This section details the 

common methodological components and paradigms 

within these collaborative approaches. 

1. Two-Network Collaborative Paradigms 

The fundamental idea behind two-network collaboration 

is to train two or more neural networks simultaneously, 

allowing them to provide mutual supervision or act as 

filters for each other, thereby reducing the detrimental 

effects of noisy labels. 

1.1. Co-teaching 

The seminal work on Co-teaching [19] introduced the 

concept of two deep neural networks learning together. 

Each network is trained on a mini-batch of data. During 

each iteration, both networks identify a subset of "clean" 

samples (i.e., those with a small loss value) from their 

respective mini-batches. They then exchange these 

identified clean subsets and train on the data selected by 

their peer. The rationale is that deep networks tend to fit 

clean labels before memorizing noisy ones [3]. By 

training on samples deemed clean by a peer network, 

each network avoids learning from the noisy samples 

that its own peer might have memorized. This 

mechanism directly alleviates confirmation bias by 

preventing self-reinforcement of erroneous labels. An 

extension, Co-teaching+ [79], further refines this by 

addressing disagreement to improve generalization. 

1.2. DivideMix and Related Approaches 

DivideMix [32] extends the idea of co-teaching by 

framing learning with noisy labels as a semi-supervised 

learning problem. It employs a Gaussian Mixture Model 

(GMM) [49] to estimate the probability of each sample 

being clean or noisy based on the average loss of two 

networks. Samples with high confidence in being "clean" 

are treated as labeled data, while those with high 

confidence in being "noisy" are treated as unlabeled data. 

Consistency regularization [4, 5, 52, 59] is then applied to 

the "unlabeled" (noisy) data, encouraging consistent 

predictions under different augmentations. The two 

networks collaboratively refine the sample division and 

learn from both the "clean" labeled data and the "noisy" 

consistency-regularized data. This method is highly 

effective because it dynamically separates clean from 

noisy samples and applies robust learning techniques 

appropriate for each subset. 

1.3. Peer Loss Functions and Agreement-Based Methods 

Another paradigm involves peer loss functions, where a 

network’s loss is computed not just with respect to the 

given label, but also with respect to the prediction of a 

peer network [41]. This encourages agreement between 

the networks on potentially clean samples or penalizes 

discrepancies on noisy ones. Combating noisy labels by 

agreement (CNA) [64] is a joint training method with co-

regularization that explicitly leverages the agreement 

between two networks to identify and suppress noisy 

labels. By favoring samples on which both networks agree, 

these methods implicitly filter out unreliable labels. The 

idea of "Mean Teachers" also falls under this category, 

where a student network is trained with consistency 

regularization using the exponentially moving average 

(EMA) of a teacher network's weights [59]. 

1.4. Contrastive Learning Integration 

Recent advancements combine two-network 

collaboration with contrastive learning [11]. The idea is 

that even with noisy labels, the underlying data structure 

(features) can be learned robustly through self-supervised 

contrastive learning. 

• Twin Contrastive Learning (TCL) [25]: Utilizes two 

networks to perform contrastive learning, where samples 

with similar features are pulled closer and dissimilar 

features pushed apart, helping the networks learn robust 

representations that are less susceptible to label noise. 

• Selective-Supervised Contrastive Learning [37]: 

Combines selective sample learning with contrastive 

objectives. 

• UniCon [28]: Combats label noise through uniform 

selection and contrastive learning, further enhancing 

representation learning. 

• Robust Representation Learning [34]: Focuses on 

learning robust representations that inherently resist the 

influence of noisy labels, often using contrastive 

approaches. 

2. Sample Selection and Correction Mechanisms 

Central to many two-network collaboration approaches is 

the intelligent selection and potential correction of 

samples. 

• Loss-based Sample Selection: Networks identify 

"small-loss" samples [19] or those whose loss values fall 

below a certain threshold within a mixture model [32, 44]. 

The assumption is that samples with consistently small 

loss values are likely to have correct labels. 

• Confidence-based Selection: Some methods 

incorporate sample-wise label confidence [1] or 

confidence scores to weigh samples during training [52, 

80, 86]. This can involve filtering based on prediction 

consistency under various augmentations. 

• Meta-learning for Label Correction: Approaches 

like MetaCleaner [83] and Meta Label Correction [89] train 

a meta-learner to predict clean labels or correct noisy 

ones, often leveraging a small clean validation set. This 

meta-learning process can be guided by the collaborative 
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feedback of two networks. 

• Optimal Transport (OT) Filters: Recent methods 

like OT-filter [16] and CSOT [6] use optimal transport 

theory to filter noisy samples or align noisy distributions 

with clean ones, often incorporating a curriculum 

learning aspect. 

3. Loss Functions and Regularization 

Beyond standard cross-entropy loss, two-network 

collaboration frameworks often incorporate specialized 

loss functions and regularization techniques: 

• Consistency Regularization: Encourages the 

model to produce consistent predictions for different 

augmented versions of the same input, especially for 

samples identified as "noisy" or "unlabeled" [4, 5, 52, 59, 

60]. This helps in learning invariant features from noisy 

data. 

• Generalized Cross Entropy (GCE) [87]: A robust 

loss function that combines advantages of Mean Absolute 

Error (MAE) and cross-entropy, making it less sensitive 

to noisy labels. 

• Early-Learning Regularization: Prevents models 

from memorizing noisy labels by adding regularization 

terms that penalize early overfitting to noise [40, 14]. 

• Uncertainty Estimation: Quantifying and 

leveraging uncertainty in predictions to guide the 

learning process [51, 84, 85]. 

• Knowledge Distillation: Transferring knowledge 

from one confident network (teacher) to another 

(student) to improve robustness [43]. 

4. Datasets and Experimental Setup 

Evaluation typically involves benchmark datasets 

commonly used in image classification, with various 

levels and types of synthetic noise introduced, or real-

world noisy datasets. 

• Synthetic Noise: CIFAR-10 [30] and CIFAR-100 

are frequently used, where noise (e.g., symmetric, 

asymmetric, instance-dependent) is artificially injected 

into the labels [19, 32, 64]. 

• Real-world Noisy Datasets: WebVision [38] and 

Tiny-ImageNet [31] are often used, which inherently 

contain real-world label noise from web crawling or 

crowd-sourcing [18, 38, 71]. Facial expression 

recognition datasets (e.g., collected from the wild [36]) 

are also prone to label ambiguity, and methods like TP-

FER [35] and LA-Net [67] address this. 

• Network Architectures: Common backbone 

architectures for experimental validation include ResNet 

[20, 21], Inception-v4 [57], or simpler CNNs. 

By orchestrating these methodological components, two-

network collaboration frameworks aim to create a 

learning environment where networks collectively learn 

to discern true labels from noise, thereby significantly 

mitigating confirmation bias and improving 

generalization. 

RESULTS AND DISCUSSION 

The rigorous evaluation of various two-network 

collaboration strategies against deep learning models 

trained with noisy labels consistently demonstrates their 

superior performance in mitigating confirmation bias and 

enhancing generalization capabilities. These results are 

typically observed across diverse datasets, noise types, 

and noise levels, highlighting the robustness and efficacy 

of collaborative learning paradigms. 

1. Superior Performance in Noise Robustness 

Across benchmark datasets such as CIFAR-10, CIFAR-100 

(with synthetic noise), and real-world noisy datasets like 

WebVision and Tiny-ImageNet, two-network 

collaboration methods consistently outperform single-

network approaches and conventional robust learning 

techniques [19, 32, 41, 64, 86]. 

• Higher Accuracy: Models trained with two-network 

collaboration often achieve significantly higher test 

accuracies on clean data, especially at high noise rates (e.g., 

40-80% noise) [19, 32]. For instance, methods like 

DivideMix [32] and Co-teaching [19] have shown 

substantial gains over baselines, effectively combating the 

memorization of noisy labels. This indicates that by 

identifying and filtering out or down-weighting noisy 

samples, the networks learn more reliable patterns. 

• Reduced Confirmation Bias: The core benefit lies in 

the reduced tendency of the models to overfit to noisy 

labels. This is evidenced by the training loss behavior: 

while a single network’s training loss might quickly drop 

and then fit the noise, collaborative networks exhibit a 

more stable learning curve, demonstrating their ability to 

distinguish clean from noisy data during the early learning 

phase [3, 40]. This prevents the networks from converging 

to a suboptimal solution biased by incorrect labels [9]. 

• Robustness to Diverse Noise Types: Collaborative 

methods prove robust not only to symmetric (random) 

label noise but also to more challenging asymmetric or 

instance-dependent noise, where noise patterns are 

correlated with the data itself [69, 92]. Techniques that 

leverage sample selection based on agreement or loss 

discrepancy are particularly effective here [68, 88]. 

2. Efficacy of Sample Selection and Correction 

The success of these collaborative frameworks largely 

hinges on their ability to accurately identify and manage 

noisy samples. 

• Accurate Sample Identification: Methods like Co-

teaching [19] and DivideMix [32] successfully identify a 

"clean" subset of data based on low loss values or GMM-

based confidence scores. The agreement between two 

independently learning networks acts as a powerful filter, 
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as it's less likely for both networks to incorrectly 

memorize the same noisy label simultaneously, 

especially in the early stages of training [19, 79]. Recent 

work using optimal transport [6, 16] or meta-label 

purifiers [61] further refines this selection process. 

• Dynamic Label Correction: Some collaborative 

approaches go beyond mere selection and actively 

correct the noisy labels, or provide soft labels, 

particularly for samples identified as likely noisy [1, 39, 

42, 43, 85]. This can involve using the peer network's 

prediction as a pseudo-label or using a meta-learner 

trained to generate corrected labels [83, 89]. 

• Improved Representation Learning: Collaborative 

training, especially when integrated with contrastive 

learning [11, 25, 28, 34, 37], also leads to the learning of 

more robust and discriminative features. These robust 

representations are inherently less susceptible to label 

noise, even if the labels are noisy, because the model 

learns the intrinsic data structure rather than just 

mapping inputs to given labels [34, 66, 78]. 

3. Advantages Over Single-Network Approaches 

Two-network collaboration offers distinct advantages 

over traditional single-network methods for noisy labels: 

• Self-Correction Without Explicit Noise Modeling: 

Unlike many loss-correction methods [2, 48] that require 

an explicit estimation of the noise transition matrix, 

collaborative networks can implicitly or explicitly 

identify noisy samples and correct them without needing 

this prior information. This makes them more practical in 

real-world scenarios where noise rates are unknown 

[41]. 

• Reduced Overfitting: The inherent disagreement 

or cross-supervision between the two networks acts as a 

strong regularizer, effectively preventing each network 

from overfitting to the noisy labels present in its subset 

of data [14, 40, 64]. 

• Enhanced Generalization: By learning from 

cleaner subsets and/or through robust representations, 

the models generalize better to unseen, clean data, which 

is the ultimate goal in practical applications. 

• Flexibility: The modular nature allows for 

integration with various techniques, such as data 

augmentation [4, 5, 15, 82], curriculum learning [6, 27, 

80], or advanced optimization strategies. 

4. Challenges and Discussion 

Despite their strong performance, two-network 

collaboration methods face certain challenges: 

• Increased Computational Cost: Running two or 

more separate networks simultaneously naturally 

increases computational demands during training, both 

in terms of memory and processing time. 

• Hyperparameter Sensitivity: The performance 

can be sensitive to hyperparameter choices, especially the 

weighting coefficients for different loss components and 

the criteria for sample selection (e.g., loss thresholds). 

• Performance at Extremely High Noise Rates: While 

robust, performance may still degrade at extremely high 

noise rates (e.g., over 90%), where the "clean" signal 

becomes very weak [19]. 

• Scalability to Very Large Datasets: Training on 

massive datasets like WebVision [38] or very high-

dimensional data (e.g., hyperspectral images [22, 23]) can 

be resource-intensive. 

• Theoretical Guarantees: While empirical results 

are strong, providing strong theoretical guarantees for the 

convergence and robustness of some complex 

collaborative mechanisms remains an ongoing research 

area. 

The discussion highlights that two-network collaboration 

represents a powerful paradigm shift in addressing label 

noise. By mimicking a form of peer review or mutual 

learning, these systems effectively build resilience against 

the inherent bias of deep networks to memorize training 

data. Their ability to dynamically discern clean from noisy 

examples and learn robust features makes them highly 

suitable for practical applications where clean data is a 

luxury. 

CONCLUSION 

The challenge of training robust deep neural networks in 

the presence of noisy labels is a fundamental problem in 

machine learning. This article has explored the concept of 

confirmation bias, wherein DNNs tend to memorize 

mislabeled examples, leading to poor generalization. We 

presented a detailed review of two-network collaboration 

strategies as a highly effective paradigm for alleviating this 

bias and enhancing model performance. 

The findings from various studies consistently 

demonstrate that collaborative frameworks, such as Co-

teaching, DivideMix, and methods integrating contrastive 

learning, significantly outperform single-network 

approaches. Their strength lies in their ability to 

dynamically identify clean samples, perform robust 

learning through consistency regularization, and mutually 

correct erroneous labels. This collaborative self-correction 

mechanism effectively prevents the networks from 

overfitting to noise, leading to higher accuracy and 

improved generalization on clean, unseen data, even 

under high noise rates and complex noise patterns. 

In conclusion, two-network collaboration represents a 

promising direction for developing robust deep learning 

models in real-world scenarios where label noise is 

inevitable. By leveraging the synergistic interaction 

between multiple learning agents, these methods foster a 

more resilient training process, mitigating the inherent 

confirmation bias of deep networks. 
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Future research in this area should focus on several key 

directions. Firstly, exploring more computationally 

efficient collaborative architectures and training 

strategies to make these methods scalable for even larger 

models and datasets. Secondly, developing adaptive 

mechanisms that can automatically tune 

hyperparameters and sample selection thresholds based 

on varying noise characteristics. Thirdly, extending these 

collaborative paradigms to more complex learning 

settings, such as few-shot learning [20], multi-modal 

learning [47, 50, 53, 54, 55, 56, 70, 72], or when dealing 

with highly imbalanced datasets. Finally, further 

theoretical understanding of how mutual learning 

prevents memorization and enhances generalization 

remains an important avenue for future investigation. 
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