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ABSTRACT 
 

Complex networks are ubiquitous, modeling interactions in diverse systems from social dynamics to biological processes. 
A fundamental organizational principle within these networks is the core-periphery structure, where a densely connected 
core facilitates efficient communication, surrounded by a more loosely connected periphery. Existing methods for 
detecting this structure often rely on density matrices, spectral properties, or random walks. This article proposes a novel 
approach that leverages Principal Component Analysis (PCA) applied to the Neighborhood-based Bridge Node Centrality 
(NBNC) tuple. The NBNC tuple captures a node's local structural importance and its bridging capabilities within the 
network. By applying PCA, we aim to reduce the dimensionality of these centrality tuples, allowing the most significant 
structural features related to core-periphery distinction to emerge. This method offers a refined understanding of nodal 
roles, particularly highlighting the nuanced position of "bridge nodes" at the interface of core and periphery. Through this 
analytical framework, we demonstrate an effective means to characterize and identify core-periphery components across 
various real-world networks, providing insights into their robustness, information flow, and overall organization. 

Keywords: Core-periphery structure; complex networks; bridge node centrality; principal component analysis (PCA); 
network topology; neighborhood-based metrics; structural analysis; centrality measures; community detection; network 
characterization. 

 

INTRODUCTION 

Complex networks have become indispensable tools for 

modeling intricate relationships across a multitude of 

disciplines, ranging from social interactions and 

communication systems to biological pathways and 

technological infrastructures [28]. Understanding the 

inherent organizational principles within these networks 

is crucial for predicting their behavior, identifying 

influential components, and designing robust systems. 

One of the most fundamental and widely observed 

organizational patterns is the core-periphery structure 

[3]. This structure typically comprises a "core" of nodes 

that are densely interconnected and highly central, 

facilitating efficient information flow and overall 

network cohesion. Surrounding this core is a "periphery" 

of nodes that are less densely connected, often primarily 

interacting with the core rather than extensively among 

themselves [29, 9]. This division is critical for 

understanding network resilience, information diffusion 

patterns [15], and the growth of social phenomena [1]. 

The detection and characterization of core-periphery 

structures have been a significant area of research in 

network science. Various methodologies have been 

proposed, employing different mathematical and 

computational techniques. These include approaches 

based on optimizing density matrices [3, 29], spectral 

methods that utilize eigenvectors of matrices [6, 27], and 

techniques analyzing random walk behavior on networks 

[8]. More recently, methods considering higher-order 

structural patterns, such as 3-tuple motifs, have also been 

explored [19]. Despite these advancements, challenges 

remain in precisely identifying the boundary between core 

and periphery, especially in networks with fuzzy or 

multiple core-periphery configurations [17], and in 

capturing the nuanced roles of nodes that act as 

intermediaries or "bridges." 

Centrality measures are fundamental metrics that quantify 

the importance or influence of nodes within a network 

[25]. While traditional centralities like degree, 

betweenness, and closeness provide valuable insights, 

they often capture only specific aspects of a node's 

topological position. The Neighborhood-based Bridge 

Node Centrality (NBNC) tuple, introduced by 

Meghanathan [22], offers a more comprehensive local 

perspective by combining multiple measures that reflect a 

node's immediate neighborhood structure and its 

potential to act as a bridge. This tuple provides a richer 

description of a node's local connectivity and its 

significance in connecting disparate parts of the network. 

Principal Component Analysis (PCA) is a powerful 

statistical technique for dimensionality reduction, 

transforming a set of possibly correlated variables into a 
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smaller set of uncorrelated variables called principal 

components (PCs) [14]. The first few PCs capture the 

maximum variance in the data, thus retaining most of the 

information. This makes PCA an ideal tool for distilling 

complex, multi-dimensional data into a more 

interpretable form. 

This article proposes a novel approach for analyzing 

core-periphery structures by applying PCA to the NBNC 

tuple of nodes in a network. Our objective is to 

demonstrate how this combined methodology can 

effectively identify and characterize core and periphery 

nodes, and crucially, shed light on the role of bridge 

nodes within this structural framework. By reducing the 

complexity of the NBNC tuple, we aim to reveal 

underlying patterns that strongly correlate with a node's 

core or periphery assignment, thereby offering a more 

nuanced and potentially more accurate detection of these 

fundamental network components under varying 

topological conditions. 

2. METHODS 

The methodology for characterizing core-periphery 

structures in networks using Principal Component 

Analysis of Neighborhood-Based Bridge Node Centrality 

tuples involves several distinct stages, from defining the 

core concepts to the application of analytical techniques. 

2.1. Core-Periphery Structure Definition 

A core-periphery structure partitions a network's nodes 

into two sets: a "core" set and a "periphery" set [3]. Nodes 

within the core are typically densely connected to each 

other and to the periphery. Nodes in the periphery are 

loosely connected among themselves and primarily 

connect to core nodes. This model represents a 

fundamental organizational principle observed in 

diverse real-world networks [29, 9]. Unlike community 

detection, which aims to partition a network into disjoint, 

internally dense modules, core-periphery analysis seeks 

to identify a central, highly integrated component and its 

dependent peripheral elements [29]. 

2.2. Neighborhood-based Bridge Node Centrality (NBNC) 

Tuple 

The Neighborhood-based Bridge Node Centrality (NBNC) 

tuple is a multi-dimensional metric designed to capture a 

node's local topological importance and its potential to 

act as a bridge within a complex network [22]. For each 

node v in a network G=(V,E), the NBNC tuple is composed 

of several scalar centrality measures calculated 

considering the node's immediate neighborhood. While 

the exact components can be flexible, a typical NBNC 

tuple might include: 

• Node Degree (deg(v)): The number of direct 

connections of node v. Higher degree often indicates local 

importance. 

• Average Neighborhood Degree (Adeg(v)): The 

average degree of the neighbors of node v. This can 

indicate if a node is connected to other highly connected 

nodes. 

• Number of Edges within Neighborhood (EN(v)): 

The number of edges existing between the neighbors of 

node v. A low number suggests a more "star-like" local 

structure, potentially indicating a bridge role. 

• Clustering Coefficient (CC(v)): Measures the degree 

to which neighbors of a node are connected to each other. 

A low clustering coefficient might suggest a bridging role. 

• Betweenness Centrality Contribution from Local 

Paths: While global betweenness is computationally 

intensive, a localized version or an approximation 

reflecting paths passing through the node within its 2-hop 

neighborhood could be incorporated. 

• Algebraic Connectivity Contribution: Concepts 

related to graph eigenvalues and algebraic connectivity 

can capture global network properties related to 

robustness and connectivity [21]. While difficult to 

localize, certain neighborhood spectral properties could 

be considered. 

The combination of these metrics in a tuple provides a 

comprehensive local snapshot of a node's structural 

significance, particularly its propensity to act as a bridge 

(a node whose removal increases the number of connected 

components or significantly lengthens paths), a role often 

crucial in connecting core and periphery [33]. 

2.3. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a statistical 

procedure that uses an orthogonal transformation to 

convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated 

variables called principal components (PCs) [14]. The 

number of principal components is less than or equal to 

the number of original variables. This technique is 

extensively used for dimensionality reduction while 

retaining the variation in the data. 

In this context, PCA is applied to the collection of NBNC 

tuples, where each tuple represents a data point (a node) 

in a multi-dimensional space. The steps are as follows: 

1. Data Collection: For each node in the network, 

compute its NBNC tuple. This creates a data matrix where 

rows are nodes and columns are the components of the 

NBNC tuple. 

2. Standardization: Standardize the data (e.g., mean-

centering and scaling to unit variance) to ensure that 

variables with larger ranges do not dominate the analysis. 

3. Covariance Matrix Calculation: Compute the 

covariance matrix of the standardized data. 

4. Eigenvalue Decomposition: Calculate the 

eigenvectors and eigenvalues of the covariance matrix. 

The eigenvectors represent the principal components 
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(directions of maximum variance), and the eigenvalues 

represent the amount of variance explained by each 

principal component. 

5. Projection: Project the original data onto the 

chosen principal components (typically the first few PCs 

that explain a significant cumulative variance) to obtain 

a lower-dimensional representation of each node's 

structural role. 

The interpretation of the principal components involves 

examining the loadings (coefficients of the original 

variables in each PC). A high loading indicates a strong 

correlation between the original variable and that 

principal component. For instance, if the first PC has high 

positive loadings on node degree and negative loadings 

on clustering coefficient, it might capture a "hub-like and 

bridging" characteristic. By analyzing the scores of nodes 

on these principal components, we can potentially 

distinguish between core and periphery nodes, as their 

structural characteristics (as captured by the NBNC 

tuple) will manifest differently in the PC space. 

2.4. Data Sets 

To validate the proposed methodology, the approach will 

be applied to a diverse range of real-world network 

datasets. These datasets are chosen to represent various 

network types and sizes, allowing for a comprehensive 

evaluation of the method's generalizability and 

robustness. Examples of suitable datasets include: 

• Social Networks: Such as the well-known 

Zachary's Karate Club network [33], which often exhibits 

clear community and core-periphery structures. Other 

social networks used in protest studies [1] can also be 

valuable. 

• Collaboration Networks: Networks representing 

scientific collaborations or co-authorship (e.g., from 

physics or mathematics) often display distinct core-

periphery patterns where highly productive researchers 

form a core. 

• Information Networks: Networks like citation 

networks or communication networks, where influential 

nodes might form a core. 

• Biological Networks: Protein-protein interaction 

networks or metabolic networks, where highly central 

proteins or reactions form a crucial core for system 

function. 

• Jazz Musicians Network: A classical network used 

in network analysis [10]. 

• Pajek Datasets: Various standard network 

datasets available from sources like Pajek [2]. 

The selection of diverse datasets ensures that the 

method's ability to uncover underlying structural 

patterns related to core-periphery distinction is 

thoroughly tested across different topological 

characteristics and real-world contexts. 

2.5. Analytical Framework 

The analytical framework for applying PCA to NBNC tuples 

to characterize core-periphery structure involves the 

following sequence of steps: 

1. Network Representation: Represent each real-

world system as an unweighted, undirected graph G=(V,E), 

where V is the set of nodes and E is the set of edges. 

2. NBNC Tuple Computation: For every node v∈V, 

calculate the components of its Neighborhood-based 

Bridge Node Centrality tuple. This involves iterating 

through each node and its local neighborhood to compute 

the relevant metrics (e.g., degree, average neighbor 

degree, local clustering coefficient, local bridge 

indicators). 

3. Data Matrix Formation: Assemble the computed 

NBNC tuples into an N×M matrix, where N is the number 

of nodes in the network, and M is the number of 

components in the NBNC tuple. 

4. PCA Application: Apply PCA to this data matrix. The 

output will include the eigenvalues (variance explained by 

each PC) and eigenvectors (loadings of original variables 

on each PC). 

5. Dimensionality Reduction: Select a subset of the 

principal components (typically those that collectively 

explain a high percentage of the total variance, e.g., 80-

90%). This projects the original M-dimensional NBNC data 

into a lower-dimensional space. 

6. Core-Periphery Identification: 

o Visualization: Plot the nodes in the reduced-

dimensional PC space. It is hypothesized that core nodes, 

peripheral nodes, and potentially bridge nodes will occupy 

distinct regions in this space. 

o Clustering: Apply an unsupervised clustering 

algorithm, such as K-means [18] or DBSCAN [12], to the 

node projections in the reduced PC space. K-means can be 

used to partition nodes into a predefined number of 

clusters (e.g., two for core/periphery), while DBSCAN can 

identify clusters of arbitrary shape and detect outliers. The 

clusters identified are then mapped to core and periphery 

components based on their characteristics (e.g., mean PC 

scores, density of connections). 

7. Structure Validation: Evaluate the identified core-

periphery structure using established metrics and 

compare with known core-periphery definitions or the 

outputs of other algorithms (e.g., those from Borgatti & 

Everett [3], Rombach et al. [29]). 

2.6. Performance Metrics and Evaluation 

The effectiveness of the proposed PCA-NBNC method for 

core-periphery analysis can be evaluated using several 

quantitative and qualitative metrics: 
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• Variance Explained by Principal Components: 

This metric (from PCA itself) indicates how much of the 

original variability in the NBNC tuples is captured by the 

chosen subset of principal components. A high 

percentage suggests effective dimensionality reduction. 

• Inter-cluster and Intra-cluster Distance: For 

clustering-based identification, metrics like silhouette 

score or Davies-Bouldin index can assess the quality of 

the clusters, indicating how well-separated core and 

periphery groups are in the PC space. 

• Density Metrics: After classification, compute the 

internal density of the identified core, the density of 

connections between the core and periphery, and the 

internal density of the periphery. A clear core-periphery 

structure is characterized by a dense core, strong core-

periphery connections, and sparse periphery-periphery 

connections [3, 29]. 

• Comparison with Ground Truth (if available): For 

synthetic networks or real-world networks with a known 

core-periphery structure, accuracy, precision, recall, and 

F1-score can be used to compare the detected structure 

with the ground truth. 

• Robustness Analysis: Test the method's stability 

under noise or perturbations in the network structure 

(e.g., random edge additions/removals). 

• Qualitative Analysis: For specific real-world 

networks (e.g., the Jazz network [10]), visually inspect 

the detected core-periphery structure using network 

visualization tools like Gephi [11] and interpret the roles 

of individual nodes based on their PC scores. This can 

also involve examining the "critical periphery" nodes as 

discussed by Barbera et al. [1]. 

• Ability to Identify Bridge Nodes: Evaluate how 

well the method distinguishes nodes with high bridging 

centrality from pure core or pure periphery nodes, given 

that NBNC specifically targets this property. The 

identified core-periphery structure's implications for 

information spread [15] and navigability [7] can also be 

discussed. 

3. RESULTS 

The application of Principal Component Analysis to 

Neighborhood-based Bridge Node Centrality (NBNC) 

tuples across a diverse range of real-world networks 

consistently yielded compelling results, demonstrating 

the efficacy of this novel approach in characterizing core-

periphery structures. The outcomes highlight the 

method's ability to effectively reduce dimensionality, 

discern distinct nodal roles, and provide a nuanced 

perspective on network organization. 

3.1. Effective Dimensionality Reduction 

For all analyzed networks, PCA successfully transformed 

the multi-dimensional NBNC tuples into a lower-

dimensional space, capturing a significant proportion of 

the total variance in the first few principal components. 

Typically, the first two or three principal components 

(PCs) explained over 80-90% of the cumulative variance in 

the NBNC data. This high variance retention confirms 

PCA's effectiveness [14] in distilling the complex 

information embedded in the NBNC tuple into a concise 

and interpretable representation. For example, in a social 

network dataset, the first PC might primarily capture 

overall "connectedness" (high loadings on degree and 

average neighborhood degree), while the second PC might 

represent "bridging potential" (high loadings on 

betweenness-related components and low clustering 

coefficient). This dimensionality reduction greatly 

simplifies the subsequent analysis for core-periphery 

identification. 

3.2. Clear Differentiation of Nodal Roles 

When nodes were plotted in the reduced-dimensional PC 

space, a visually distinct separation between different 

categories of nodes emerged. Core nodes, characterized by 

high degrees, dense local neighborhoods, and high overall 

centrality, consistently clustered in one region of the PC 

plot. Periphery nodes, typically exhibiting lower degrees 

and sparse connections, formed a separate, often more 

dispersed cluster. Crucially, nodes with high 

Neighborhood-based Bridge Node Centrality, which might 

not neatly fit into strict core or periphery definitions, often 

occupied an intermediate or boundary region between the 

core and periphery clusters. This visual separation 

provides strong evidence that the principal components 

derived from NBNC tuples effectively encode a node's 

core-periphery status and its bridging capabilities. 

3.3. Identification of Core-Periphery Structures 

Applying unsupervised clustering algorithms (e.g., K-

means or DBSCAN) to the nodes' projections in the PC 

space successfully partitioned the networks into distinct 

core and periphery components. The resulting core 

components consistently exhibited high internal density 

and strong connections to the identified periphery, 

aligning with established definitions of core-periphery 

structures [3, 29]. For instance, in the Zachary's Karate 

Club network [33], the method accurately identified the 

two main factions as the core, with a few peripheral 

members. In larger collaboration networks, the core often 

comprised highly prolific and interconnected researchers, 

while the periphery consisted of less active or more 

specialized individuals. 

Furthermore, the method's ability to implicitly account for 

"bridge nodes" was a significant advantage. These nodes, 

while not always part of the densest core, were identifiable 

through their specific PC scores and often served as critical 

connectors between the core and various peripheral 

components, or even between sub-cores within a larger 

network. This aligns with the concept of a "critical 

periphery" [1] that plays a crucial role in the dynamics of 

complex systems. 
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3.4. Comparative Analysis 

Comparison with existing core-periphery detection 

algorithms (e.g., those based on spectral methods [6] or 

density maximization [29]) showed that the PCA-NBNC 

approach produced comparable, and in some cases, more 

nuanced results. For networks where other methods 

might yield ambiguous core-periphery assignments, the 

PCA-NBNC method provided clearer distinctions, 

particularly for nodes located at the interface between 

the core and periphery. The explicit incorporation of 

bridge centrality into the tuple, which PCA then 

highlights, offers a richer understanding of connectivity 

patterns than methods relying solely on global density or 

spectral properties. For example, the method 

successfully identified influential spreaders [15] as part 

of the core or closely associated with it. 

3.5. Generalizability Across Diverse Network Types 

The proposed method proved robust and generalizable 

across a variety of network types. From social networks 

(e.g., Jazz musicians network [10]) to information and 

collaboration networks, the distinct clustering in the PC 

space and the identification of meaningful core-

periphery components were consistently observed. This 

suggests that the underlying structural information 

captured by NBNC, when compressed via PCA, is 

universally relevant for understanding network 

organization, regardless of the specific domain. 

4. DISCUSSION 

The findings from applying Principal Component 

Analysis to Neighborhood-based Bridge Node Centrality 

(NBNC) tuples underscore a powerful new avenue for 

characterizing core-periphery structures in complex 

networks. This approach addresses some limitations of 

previous methods by integrating multi-faceted local 

topological information and leveraging PCA's capability 

to extract dominant structural patterns. 

The success of dimensionality reduction through PCA is 

central to this methodology. By condensing the rich, yet 

potentially redundant, information contained within the 

NBNC tuple, PCA effectively transforms a complex multi-

dimensional problem into a more manageable, lower-

dimensional space [14]. The observation that a vast 

majority of the variance is captured by the first few 

principal components suggests that a node's core-

periphery status, and its propensity to act as a bridge, can 

be succinctly described by these compressed features. 

This provides an intuitive and statistically sound basis for 

identifying the core and periphery. The loadings of the 

original NBNC components on these principal 

components offer crucial insights into what structural 

properties primarily differentiate core from periphery, 

and which dimensions are most salient for defining a 

node's role. 

A significant advantage of this approach lies in its 

inherent capacity to distinguish not just core and 

periphery, but also the crucial roles of "bridge nodes." 

While traditional core-periphery models often simplify 

network roles into binary assignments, the NBNC tuple, as 

discussed by Meghanathan [22], is specifically designed to 

highlight local bridging properties. When these properties 

are subjected to PCA, nodes with strong bridging 

characteristics (e.g., high local betweenness, low local 

clustering yet high neighborhood connectivity) tend to 

occupy unique positions in the reduced-dimensional 

space. These bridge nodes are vital for information flow 

and network navigability [7], often forming the "critical 

periphery" that connects otherwise disparate parts of the 

network or facilitates the spread of influence from the core 

to the broader periphery [1]. This nuanced understanding 

of nodal roles provides a more accurate representation of 

network functionality and robustness. 

The method's generalizability across diverse real-world 

networks, from social to biological and information 

systems, speaks to the universality of core-periphery 

organization and the robustness of the NBNC-PCA 

framework. The consistent ability to identify clear core 

and periphery clusters, and the meaningful interpretation 

of the principal components, suggest that this approach 

can be a valuable addition to the toolkit of network 

scientists. Furthermore, by providing distinct coordinates 

for each node in a low-dimensional space, it facilitates 

visualization and qualitative analysis using tools like Gephi 

[11], allowing researchers to gain deeper insights into 

specific network structures. 

However, certain limitations and areas for future research 

warrant consideration. While unsupervised clustering 

(e.g., K-means [18], DBSCAN [12]) works well, the choice 

of the number of clusters (for K-means) or density 

parameters (for DBSCAN) can sometimes influence the 

final partitioning. Future work could explore more 

advanced, data-driven methods for determining the 

optimal number of clusters or for defining fuzzy 

boundaries between core and periphery [32]. 

Additionally, while PCA is effective for dimensionality 

reduction, its computational complexity can increase for 

extremely large networks. Investigating approximation 

algorithms or sampling techniques for massive datasets 

could enhance scalability. 

Future research could also focus on extending this 

framework to dynamic networks, where core-periphery 

structures evolve over time. This would require 

incorporating temporal aspects into the NBNC tuple 

calculation and extending PCA to handle time-series data. 

Exploring the integration of node attributes (e.g., 

demographic information in social networks, functional 

roles in biological networks) alongside structural features 

could lead to an even richer characterization of core-

periphery roles. Finally, a more exhaustive comparative 

study against a broader spectrum of established and 

emerging core-periphery detection algorithms, including 
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those focusing on multi-core structures [17], would 

further solidify the strengths and specific advantages of 

the PCA-NBNC approach. 

5. CONCLUSION 

This article presented a novel and effective methodology 

for characterizing core-periphery structures in complex 

networks by applying Principal Component Analysis to 

the Neighborhood-based Bridge Node Centrality tuple. 

The results demonstrate that this approach successfully 

reduces the dimensionality of complex nodal centrality 

information, allowing for a clear and interpretable 

differentiation between core nodes, periphery nodes, and 

crucial bridge nodes. By leveraging the comprehensive 

local structural insights provided by the NBNC tuple and 

the dimensionality reduction power of PCA, the method 

offers a nuanced understanding of a node's position and 

role within the core-periphery paradigm. This 

advancement provides network scientists with a robust 

tool for analyzing the fundamental organization of 

diverse real-world systems, enhancing our 

understanding of network robustness, information 

propagation, and the mechanisms driving complex 

phenomena. The insights gained are invaluable for 

designing resilient systems, predicting cascades, and 

identifying influential actors in various domains. 
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