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ABSTRACT 

 

Purpose: This systematic review aims to critically assess the current state of Building Information Modeling (BIM) 

and Industry Foundation Classes (IFC) data interoperability and semantic readiness for scalable integration with 

Artificial Intelligence (AI) applications across the Architecture, Engineering, and Construction (AEC) industry. 

Design/Methodology/Approach: A Systematic Literature Review (SLR) was conducted, adhering to PRISMA 

guidelines, analyzing key research focused on the intersection of BIM, IFC, and AI. A conceptual framework 

categorizing AI-ready data into five pillars—Structural Consistency, Semantic Completeness, Geometric Fidelity, 

Temporal Coherence, and Contextual Richness—was developed to synthesize findings. 

Findings: While AI applications, notably in predictive maintenance, risk assessment, and generative design, exhibit 

clear reliance on BIM/IFC data, the implementation is often impeded by significant data quality challenges. The core 

issue lies in the semantic gap: IFC, designed primarily for data exchange, frequently lacks the explicit, complete, and 

consistently structured information required for machine learning algorithms. Current approaches heavily rely on 

labor-intensive pre-processing, graph-based data transformations, or domain-specific custom property sets, 

compromising true interoperability. Furthermore, the handling of geometric and topological data within IFC 

frequently suffers from inaccuracies that render it unsuitable for highly sensitive computational tasks like automated 

quantity take-off and robot navigation. 

Originality/Value: This review introduces a novel framework for assessing AI-ready BIM data and systematically 

maps the specific data requirements of various AI applications to the current limitations of the IFC schema. It provides 

a foundational critique, guiding future research toward developing the necessary semantic middleware, robust 

geometric validation tools, and standardization efforts for achieving seamless BIM-AI integration. 
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INTRODUCTION 

1.1. Contextualizing the Digital Transformation in 

Construction 

The Architecture, Engineering, and Construction (AEC) 

 

industry faces immense pressure to enhance its 

performance metrics, which includes mitigating chronic 

issues such as cost overruns, project delays, and safety 

incidents. Historically, the sector has lagged behind other 

industries in adopting digital technologies, often 
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characterized by fragmented workflows and reliance on 

traditional, document-centric processes. This landscape, 

however, is rapidly evolving due to the imperative for 

innovation driven by global urbanization and 

sustainability mandates. At the forefront of this shift lies 

Building Information Modeling (BIM), which 

fundamentally changes how design, construction, and 

operation information is created, managed, and shared 

throughout the entire asset lifecycle. BIM is not merely a 

geometric modeling tool; it serves as a shared knowledge 

resource that provides a reliable basis for decisions 

during the life cycle of a facility, defining an operational 

paradigm shift for project delivery. The adoption of BIM 

is associated with improved coordination, enhanced 

communication, and a higher potential for error reduction 

throughout the project lifecycle. 

1.2. The Ascendance of Artificial Intelligence in AEC 

Parallel to the rise of BIM, Artificial Intelligence (AI) has 

emerged from theoretical concepts to a transformative 

technology across various sectors. While the 

foundational ideas of AI trace back to the mid-20th 

century, modern advancements, specifically in Machine 

Learning (ML) and Deep Learning (DL), have unlocked 

unprecedented computational power, driven by 

algorithmic sophistication and the proliferation of big 

data. The AEC industry stands to benefit profoundly from 

AI by moving beyond static models toward predictive, 

proactive, and generative decision-making capabilities. 

Current AI applications in AEC are wide-ranging, 

encompassing sophisticated tasks such as optimizing 

facility design through generative algorithms, predicting 

maintenance needs for mechanical, electrical, and 

plumbing (MEP) components, monitoring construction 

site safety in real-time using computer vision, and 

automating quality control processes through integrated 

sensory data. 

The ambition of these AI models—to learn, predict, and 

optimize complex phenomena—places a critical 

dependence on the quality and structure of the input data. 

Specifically, AI algorithms require data that is not only 

voluminous but also high-fidelity, semantically rich, and 

computationally accessible. In the context of the built 

environment, this data is primarily intended to be 

supplied by the integrated models generated within the 

BIM environment. AI’s ability to process vast quantities 

of data predicts improved risk assessment and more 

optimized resource allocation across complex 

construction projects. 

1.3. The Critical Role of IFC and Data Standards 

The power of BIM is inherently constrained by the 

challenge of interoperability, the ability for different 

software applications to exchange and utilize data 

reliably. This challenge is rooted in the proprietary nature 

of many BIM authoring tools. To overcome this 

fragmentation, the Industry Foundation Classes (IFC) 

standard was developed by buildingSMART 

International. IFC is a vendor-neutral, non-proprietary 

data model that describes building and construction 

industry data, serving as the common language for the 

digital exchange of information. Theoretically, IFC 

should function as the key that unlocks the full potential 

of BIM data for computational applications, including 

AI. By providing a structured, hierarchical schema that 

defines elements, properties, and relationships within a 

building model, IFC offers a pathway to a singular, 

accessible data source for diverse AI models across 

different life cycle stages. The standardization offered by 

IFC is expected to facilitate the smooth handover of 

information between project stakeholders and disparate 

software platforms. 

1.4. Problem Statement and Research Gap 

Despite the foundational potential of BIM and the 

standardization provided by IFC, the seamless and 

scalable integration of AI remains a significant hurdle. AI 

models, particularly those based on advanced ML and 

DL, demand data that is explicitly complete and 

semantically unambiguous. The current reality reveals a 

pervasive semantic gap between the information 

structure defined by IFC (designed primarily for data 

exchange/archiving) and the strict data requirements of 

AI algorithms (designed for pattern recognition and 

automated reasoning). Models exported via IFC often 

suffer from structural inconsistencies, missing critical 

non-geometric data (such as properties necessary for 

energy analysis or cost estimation), and ambiguous 

semantic classification. This insufficient readiness 

necessitates significant, labor-intensive pre-processing, 

compromising the efficiency and scalability of AI 

deployment. 

Existing literature touches upon specific BIM-AI 

applications; however, a systematic, overarching 

synthesis that critically evaluates the readiness of the 

underlying IFC data structure through the exacting lens 

of diverse AI requirements is largely absent. Specifically, 

the literature lacks a unified framework that evaluates 

both the semantic and geometric/topological fidelity of 

IFC data required for advanced computational models. 

This review seeks to address this critical gap by 

systematically analyzing the current methodologies for 

preparing BIM/IFC data for AI and identifying the 

persistent interoperability and data quality challenges 

that collectively impede scalable, industry-wide AI 

deployment. 

1.5. Research Objectives 

This systematic review is structured around the following 

objectives: 

● To systematically map and classify current AI 
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applications that specifically utilize BIM/IFC data, 

identifying their core data dependencies. 

● To critically analyze the state of semantic 

enrichment and data completeness within the IFC schema 

necessary for advanced computational models. 

● To evaluate the common methodological 

approaches for pre-processing, converting, and 

transforming IFC data into a machine-consumable 

format. 

● To identify and articulate the persistent 

interoperability and data quality challenges that 

collectively impede the scalable and robust deployment 

of AI throughout the AEC sector. 

1.6. Structure of the Article 

Following this introduction, Section 2 details the 

Systematic Literature Review (SLR) Methodology, 

including the search strategy, eligibility criteria, and the 

conceptual framework developed for AI-ready data. 

Section 3 presents the Results, classifying AI 

applications, mapping data requirements, and 

documenting common pre-processing methodologies and 

identified challenges. Section 4 provides a deep 

Discussion of the findings, focusing on the limitations of 

IFC, the role of knowledge graphs, and the critical 

importance of geometric fidelity. Finally, Section 5 offers 

the Conclusion and proposes future research directions. 

2. METHODS 

2.1. Systematic Review Protocol 

This study employed a Systematic Literature Review 

(SLR) methodology, designed to provide a 

comprehensive, unbiased, and repeatable synthesis of 

existing research. The protocol adhered to the widely 

accepted guidelines established by the Preferred 

Reporting Items for Systematic Reviews and Meta- 

Analyses (PRISMA) statement, ensuring the highest 

level of rigor and transparency in the selection and 

reporting process. The SLR approach was chosen over a 

narrative review to manage the vast and multidisciplinary 

body of literature spanning construction technology, 

computer science, and engineering management, thereby 

minimizing selection bias and promoting evidence-based 

conclusions. 

2.2. Search Strategy and Data Sources 

The search strategy targeted key electronic databases 

recognized for their coverage of engineering, computing, 

and construction literature, including Web of Science, 

Scopus, and Google Scholar. The primary search query 

was constructed using a combination of keywords, 

separated by Boolean operators: 

(BIM OR "Building Information Model" OR IFC OR 

"Industry Foundation Classes") AND ("Artificial 

Intelligence" OR "Machine Learning" OR "Deep 

Learning" OR AI OR ML) AND (Construction OR AEC 

OR "Built Environment") 

This combination of terms was designed to capture 

research that explicitly connects the foundational data 

models of the built environment (BIM/IFC) with 

advanced computational methods (AI/ML). The search 

was refined to include only peer-reviewed journal 

articles, conference proceedings, and reputable technical 

reports published up to the cutoff date of the review. The 

initial search yielded a substantial number of articles, 

which were then subjected to rigorous screening. 

2.3. Eligibility Criteria and Study Selection 

The retrieved documents underwent a two-phase 

selection process based on the following eligibility 

criteria: 

Inclusion Criteria: 

1. The study must explicitly involve the application 

or discussion of an AI/ML technique. 

2. The study must utilize or directly discuss the use 

of BIM or IFC data as the primary or critical input source 

for the AI model. 

3. The article must be published in English and be 

a full-text peer-reviewed source (journal or conference 

paper). 

4. The article must be available in full text for 

review. 

Exclusion Criteria: 

1. Studies focusing on general AI applications 

without specific reference to BIM/IFC data. 

2. Studies focusing purely on BIM implementation 

without computational AI application. 

3. Short abstracts, editorials, and non-academic 

publications. 

In the first phase, titles and abstracts were screened for 

relevance to the core intersection of BIM, IFC, and AI. In 

the second phase, the full text of the remaining articles 

was assessed against the inclusion criteria. Any conflicts 

regarding inclusion were resolved through consensus 

among the review team. 

2.4. Data Extraction and Synthesis 

For each included study, the following data points were 

systematically extracted and recorded: 
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● AI Application Domain: (e.g., Safety, 

Scheduling, Energy Analysis, Generative Design) 

● AI Technique Employed: (e.g., Convolutional 

Neural Networks, Support Vector Machines, Expert 

Systems) 

● BIM/IFC Version and Source: (e.g., IFC4, Revit, 

custom schema) 

● Data Pre-processing/Transformation Method: 

(e.g., graph conversion, feature engineering, 

vectorization) 

● Identified Data Challenges/Limitations: (The 

specific issues encountered with the BIM/IFC data). 

The data synthesis involved a rigorous thematic analysis. 

Extracted challenges were clustered into recurring 

themes to identify the most significant and pervasive 

interoperability issues. This thematic clustering informed 

the development of a conceptual framework which is 

central to the subsequent analysis. 

2.5. The Conceptual Framework for AI-Ready Data 

To structure the analysis of the results, a conceptual 

model defining the necessary characteristics of an "AI- 

Ready" BIM model was established. This framework 

posits that for BIM/IFC data to be successfully consumed 

by sophisticated AI algorithms, it must satisfy five 

critical pillars. The absence or weakness of any one pillar 

predicts failure or significant friction in the AI integration 

process. 

1. Structural Consistency: Adherence to the 

standardized IFC schema without model redundancy or 

inconsistent entity usage, ensuring the computational 

path is predictable. This relates to the formal compliance 

of the data with the schema definition. 

2. Semantic Completeness: The inclusion of all 

necessary non-geometric properties (e.g., fire rating, 

material strength, maintenance date) explicitly required 

by the AI task, beyond basic geometric representation. 

This addresses the richness of the information. 

3. Geometric Fidelity: The accuracy, precision, and 

topological correctness of the physical geometry, crucial 

for tasks like quantity take-off and robot navigation. This 

addresses the quality of the spatial model. 

4. Temporal Coherence: The ability of the model to 

represent or link to time-dependent data (4D BIM), 

essential for scheduling, progress monitoring, and asset 

lifecycle management. 

5. Contextual Richness: The seamless integration 

of external, real-world data sources (e.g., IoT sensor 

readings, site photographs) with the BIM elements, 

necessary for predictive and operational AI models, 

establishing the digital twin connection. 

3. RESULTS 

3.1. Classification of AI Applications Utilizing BIM/IFC 

Data 

The review of the collected literature revealed a strong 

concentration of AI research across three primary AEC 

domains, each with distinct data requirements and 

vulnerabilities related to the IFC data source. 

3.1.1. Design and Analysis (Generative Design, Code 

Compliance Check) 

AI applications in the design phase focus on automating 

iterative tasks and optimizing performance outcomes. 

Generative design utilizes algorithms to explore a vast 

solution space based on performance criteria (e.g., 

structural load, daylighting, spatial layout), often 

requiring highly structured parametric input data. 

Automated code compliance checking relies on rule- 

based or machine learning systems to flag potential 

violations against building codes or project specifications 

by comparing model properties against regulatory 

requirements. 

● Data Requirement Analysis: These applications 

exhibit an extremely high demand for semantic 

completeness and geometric fidelity. The AI models 

must accurately and unambiguously identify specific 

building elements (e.g., walls, doors, stairs) and their 

related properties (e.g., fire rating, material). IFC’s 

hierarchical structure and property sets are heavily 

utilized here. However, studies show that models often 

lack the specific, granular detail needed, compelling 

researchers to develop complex, project-specific 

ontologies or extend the IFC schema with custom 

properties, thus undermining universal interoperability. 

The success of automated code checking is directly 

associated with the initial quality of property assignment 

within the BIM model. 

3.1.2. Construction Management (Scheduling, Cost 

Prediction, Safety Monitoring) 

In construction management, AI leverages BIM data to 

enhance efficiency and mitigate risk. ML models have 

been developed for predicting construction cost and 

duration based on historical data extracted from project 

models. Predictive maintenance planning for MEP 

systems utilizes BIM data (component location, type) 

integrated with IoT sensor data to forecast potential 

failures. Furthermore, AI-driven safety systems often use 

BIM geometry for collision detection, path planning for 

unmanned ground vehicles (UGVs), and identifying 

high-risk zones. 
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● Data Requirement Analysis: The core 

requirement here shifts toward Temporal Coherence and 

Contextual Richness. AI scheduling models require an 

explicit link between the 3D geometry and the time-based 

activities (4D BIM). Safety and predictive maintenance 

models necessitate the seamless fusion of static BIM 

attributes with dynamic, real-time data streams (e.g., 

location, sensor readings). Studies reveal significant 

difficulties in extracting reliable time-related parameters 

directly from current IFC instances, often requiring the 

use of middleware or external scheduling software that is 

manually linked back to the model elements. The 

accurate prediction of risks is predicted on the seamless 

integration of geometrical model data with contextual site 

information. 

3.1.3. Facility Management and Operations (Energy 

Efficiency, Digital Twin) 

The operations phase benefits from AI integration into 

Digital Twins for long-term asset performance. Models 

for optimizing energy efficiency are prominent, requiring 

detailed thermal properties, space boundaries, and 

HVAC system information. Automated guidance 

systems also rely on indoor path planning capabilities 

derived from the building’s spatial model. 

● Data Requirement Analysis: These applications 

critically depend on the correct and precise representation 

of space boundary data and semantic completeness 

regarding building performance properties. A pervasive 

challenge in this domain is the inaccuracy of space 

boundary definitions within IFC models, which directly 

impacts the reliability of energy simulation models. 

Researchers consistently find they must manually verify 

or reconstruct the spaces from the 3D geometry, 

highlighting a significant limitation in the practical utility 

of current IFC exports for energy-focused AI. The 

accuracy of energy performance modeling is closely 

associated with the correct topology of the building 

elements as represented in the IFC file. 

3.2. Mapping Data Requirements to IFC Schema 

The review indicates that the most frequently targeted 

IFC entities are IfcProduct, IfcElement, and the 

geometric representation items like 

IfcProductDefinitionShape. AI models generally succeed 

in classifying basic geometric objects but struggle with 

the non-geometric, semantic attributes. 

A crucial finding is the high reliance on custom property 

sets (Psets) when attempting to meet the demands of 

advanced AI. While IFC provides the structure for adding 

properties, the absence of universally applied standard 

Psets for specific domain tasks (e.g., a standardized Pset 

for machine learning-relevant maintenance data) forces 

project teams to create unique, non-standard attributes. 

This process ensures the immediate utility of the data for 

a single project but simultaneously creates a significant 

interoperability barrier for external AI models, which 

cannot universally interpret these unique schema 

extensions. The result is that a substantial portion of the 

effort in BIM-AI research is devoted to manual data 

augmentation and mapping post-IFC export, confirming 

the inadequacy of the native IFC structure for many 

cutting-edge AI tasks. This manual enrichment predicts a 

higher friction point for scalable, multi-project AI 

deployment. 

3.3. Methodologies for Interoperability and Data Pre- 

processing 

To bridge the gap between the complex, textual-based 

IFC file structure and the matrix/vector input required by 

most AI models, various pre-processing methodologies 

have been employed: 

1. Graph-Based Transformation: This is one of the 

most promising approaches. Researchers utilize 

Knowledge Graphs (KGs) to represent BIM data. IFC’s 

structure, which is inherently object-oriented and graph- 

like (defining objects and their relationships), lends itself 

well to KG conversion. This transformation allows AI 

models to utilize the explicit relationships between 

elements, providing a richer context than simple attribute 

lists. 

2. Vectorization and Feature Engineering: For tasks 

like cost prediction or duration estimation, researchers 

often flatten the IFC data into tabular features. This 

typically involves manually engineering features (e.g., 

total wall area, count of windows per floor) that aggregate 

the geometric and semantic data into numerical vectors 

suitable for classical ML algorithms. This process, 

however, risks losing the rich topological and relational 

context inherent in the model. 

3. Visual Programming Tools: The use of visual 

programming environments (e.g., Dynamo or 

Grasshopper) is prevalent, enabling researchers to 

automate the extraction and filtering of specific data 

subsets from the model before exporting or transforming 

them for AI input. This addresses model complexity but 

remains constrained by the initial quality of the authoring 

model. 

3.4. Identified Data Quality and Semantic Challenges 

The collective evidence points to three dominant data 

quality challenges that persistently impede BIM-AI 

integration: 

3.4.1. Structural Inconsistency and Model Redundancy 

The translation process from proprietary software to the 

neutral IFC format is susceptible to errors and 

inconsistencies.  Models  exported  from  different 
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authoring tools, even when ostensibly compliant with the 

same IFC standard (e.g., IFC4), can exhibit variations in 

how entities are defined or aggregated. Furthermore, 

within a single model, redundancy often occurs, such as 

multiple instances of the same property, or the 

inconsistent use of IfcSpace versus IfcZone, leading to 

ambiguity for AI classifiers. AI models that expect a 

predictable, structurally consistent input often fail when 

exposed to the natural variability of real-world IFC 

exports. This structural volatility predicts increased 

complexity in developing universal AI parsers. 

3.4.2. Semantic Ambiguity and Missing Data 

This is perhaps the most fundamental challenge. AI 

requires explicit semantics. If an element in an IFC file is 

labeled with a generic class (e.g., IfcElementAssembly) 

without the detailed, required properties, the AI model 

cannot infer the meaning. Studies on automated code 

checking consistently highlight the issue of missing 

properties, such as fire ratings or accessibility 

information, which are critical for the task but often 

omitted during the design or modeling stage. 

Furthermore, the generic nature of many IFC entity 

names can lead to semantic ambiguity that demands 

manual human intervention for accurate labeling, a non- 

starter for large-scale automation. The lack of 

standardized terminology for non-geometric parameters 

is associated with higher data pre-processing effort. 

3.4.3. Granularity Mismatch 

The concept of Level of Detail (LOD) in BIM relates to 

the geometric fidelity, while Level of Information Need 

(LOIN) relates to the necessary semantic content. Many 

AI applications require an LOD/LOIN that exceeds what 

is typically produced for standard project milestones. For 

instance, a detailed ML model for predictive equipment 

failure needs sub-component properties and 

manufacturer data (high LOIN), which are rarely 

included in standard IFC exports (low semantic 

completeness). This mismatch in granularity forces 

researchers to either simplify the AI task or invest 

enormous effort in manually enriching the models. The 

low LOIN in many IFC models predicts limited scope for 

highly specialized AI applications. 

4. DISCUSSION 

4.1. Re-evaluating the IFC Standard for AI-Readiness 

The findings strongly suggest that while IFC has 

succeeded as a mechanism for data exchange, its current 

structure, even in its most recent versions, presents 

limitations when treated as a directly computable 

knowledge base for advanced AI. The standard was 

fundamentally designed to capture and transfer human- 

readable design intent and geometric representation, not 

necessarily to optimize data retrieval and relational 

querying for machine reasoning. The lack of inherent 

mechanisms to define complex, non-geometric 

relationships or temporal dependencies within the core 

IFC schema hinders its application in dynamic AI tasks 

like scheduling optimization or process simulation. 

Future evolution of the IFC standard must move beyond 

entity-property lists toward concepts that support richer, 

domain-specific ontologies and explicit relationship 

modeling to facilitate AI integration. This transition is 

crucial for realizing the vision of a truly "Smart 

Construction" environment where machine inference is a 

seamless component of the digital workflow. 

4.2. The Interplay of BIM, IFC, and Knowledge Graphs 

The prevalence of graph-based methodologies in the 

reviewed literature validates the hypothesis that an 

intermediate, semantic layer is necessary to bridge the 

IFC-AI gap. Knowledge Graphs (KGs) transform the 

hierarchical IFC structure into a flexible, queryable graph 

network (nodes and edges), where relationships are 

explicitly defined and easily traversable by AI agents. 

This approach successfully addresses the issues of 

semantic ambiguity and structural inconsistency by 

normalizing the data and adding an external, custom 

ontology layer tailored to the AI task. 

However, the current implementation of KGs relies 

heavily on project-specific manual mapping and 

ontology creation. The next crucial step involves 

developing automated tools capable of generating KGs 

from raw IFC files using industry-standard semantic web 

technologies (e.g., RDF, OWL) and predefined, globally 

accepted AEC ontologies. If the industry can standardize 

the ontology used to interpret and enrich the IFC schema, 

the resulting KGs could serve as the universal semantic 

middleware necessary for scalable AI deployment. This 

semantic layer predicts a substantial reduction in the data 

preparation time for novel AI applications. 

4.3. Addressing Data Completeness: The Custom Pset 

Dilemma 

The recurring reliance on custom property sets highlights 

a critical tension: the need for project-specific detail 

versus the mandate for universal interoperability. While 

custom Psets are necessary to capture the unique 

information required for a specialized AI model (e.g., an 

ML classifier for a specific type of connection joint), their 

unmanaged proliferation erodes the standardization that 

IFC attempts to enforce. 

To resolve this, the AEC industry, in partnership with 

buildingSMART and AI researchers, must establish and 

publish a set of Minimum AI Data Requirements 

(MAIDR). These MAIDR could take the form of 

standardized, domain-specific IFC Psets (e.g., a 

"Pset_AI_Energy_Analysis" or "Pset_AI_Safety_Risk") 

that define the mandatory minimum information required 
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within a BIM model to enable common AI use cases. This 

shift would provide model authors with a clear target for 

data completeness, moving beyond general LOD 

requirements to specific LOIN targets necessary for 

machine consumption, thereby managing the 

proliferation of incompatible custom Psets. This 

standardization effort is expected to improve the 

reusability of BIM data across different AI platforms. 

4.4. A Deeper Dive: The Critical Role of IFC Geometric 

and Topological Data in AI 

While much of the discussion surrounding AI-readiness 

focuses on the semantic and non-geometric properties, 

the core geometric representation embedded within the 

IFC file presents its own set of profound challenges for 

computational analysis. Geometric data is not merely for 

visualization; it is the fundamental input for a wide array 

of AI-driven tasks, including automated quantity take- 

off, clash detection, robot path planning, visual 

monitoring, and structural analysis model generation. 

The limitations in how IFC handles geometric fidelity 

and topology directly impede the successful execution 

and scalability of these applications. 

4.4.1. The Ambiguity of Boundary Representation (B- 

Rep) in IFC 

IFC primarily utilizes Boundary Representation (B-Rep) 

to define the 3D geometry of building elements. B-Rep 

describes a solid object by defining the boundaries that 

separate its interior from its exterior—typically faces, 

edges, and vertices. While mathematically sound, the 

translation of complex B-Rep geometry from proprietary 

modeling kernels into the neutral IFC format is a 

common source of error. AI models, particularly those 

performing automated spatial reasoning or structural 

analysis, require mathematically perfect solid geometry. 

Errors that frequently occur in the B-Rep conversion 

include: 

● Non-Manifold Geometry: A condition where the 

solid geometry is mathematically ill-defined (e.g., two 

faces share only an edge, or multiple solids share a single 

vertex). When an AI algorithm, such as one for Finite 

Element Model (FEM) generation, attempts to mesh a 

non-manifold body, the process often fails or produces 

unreliable results, highlighting the need for clean 

topological data. The occurrence of non-manifold 

geometry in IFC models predicts failure in automated 

structural meshing algorithms. 

● Gaps and Overlaps: Slight numerical 

inaccuracies during the export process often result in 

small gaps between adjacent components (e.g., a wall and 

a slab) or slight overlaps. These errors are often invisible 

to the human eye in a BIM viewer but are catastrophic for 

automated quantity take-off (QTO) models, which rely 

on precise boundary intersections for volumetric 

calculations. An AI system attempting to calculate the 

required sealant volume, for example, would return an 

unreliable result if the gap tolerance is not modeled 

explicitly and correctly in the IFC file. The presence of 

these micro-gaps is associated with significant 

overestimation or underestimation in automated QTO 

processes. 

● Face Normal Vectors: For advanced visual AI 

and robotic applications, the direction of the surface 

normal vectors for the B-Rep faces is critical. Computer 

vision algorithms using geometric reconstruction rely on 

these vectors to understand orientation and visibility. 

Inconsistencies in IFC exports can lead to "flipped" 

normal vectors, which confuse these AI systems, leading 

to inaccurate object recognition or failed robot navigation 

paths, particularly in complex interior environments. 

Incorrect normal vector representation predicts errors in 

visual simultaneous localization and mapping (SLAM) 

systems. 

The challenge is further compounded because the IFC 

specification allows for multiple ways to define geometry 

(e.g., B-Rep, Swept Solid, Clipped Half Spaces), and the 

choice of representation can significantly affect the 

downstream AI utility. Swept Solids are often simpler 

and more computationally efficient for basic objects but 

fail to capture the complexity required for detailed 

mechanical parts, necessitating the use of the more 

complex, but error-prone, B-Rep. The lack of a 

standardized geometric representation across all elements 

predicts a need for multi-protocol geometric parsers in AI 

frameworks. 

4.4.2. Geometric Abstraction for Computational 

Efficiency 

AI models, especially those operating at scale or in real- 

time environments (like on-site robotic systems), cannot 

afford to process the full, complex geometry of a high- 

LOD BIM model. The sheer number of polygons in a 

large construction project IFC file is computationally 

prohibitive. This necessitates a process of geometric 

abstraction, where the IFC data must be simplified 

without losing the critical topological relationships. 

A key methodological challenge for researchers involves 

automatically converting the dense 3D B-Rep into a 

sparse, graph-based topological model. This 

transformation focuses on representing the connectivity 

and adjacency of building elements rather than their 

precise physical shape. For example, a Directed 

Representative Graph (DRG) can be generated from 

MEP systems using BIM data, allowing an AI model to 

quickly analyze flow, connectivity, and system paths 

without having to perform complex geometric 

intersection calculations. The nodes in this graph 

represent components (e.g., a pipe, a valve), and the 
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edges represent their physical connections. This shift 

from geometric fidelity to topological fidelity is crucial 

for the efficient execution of path planning, interference 

checking, and structural network analysis AI models. 

Topological models are predicted to significantly 

enhance the computational speed of network-based AI 

analyses. 

However, the AI must first reliably extract the correct 

connectivity from the IFC file. Errors in the IFC model, 

such as a component’s connection port not being 

perfectly aligned in the B-Rep, can lead to a false 

negative (a missing connection) in the generated 

topological graph, rendering the subsequent AI analysis 

useless. Researchers are increasingly turning to advanced 

graph-based methodologies that incorporate tolerance 

limits to infer connection intent, even when the 

underlying IFC geometry is slightly flawed. This 

inference, however, introduces a level of uncertainty into 

the AI result, as the model is making an assumption based 

on proximity rather than explicitly modeled connectivity. 

This reliance on tolerance-based inference suggests that 

the semantic completeness of the connectivity data in the 

source model is often lacking. 

4.4.3. The Challenge of Spatial Reasoning and Boundary 

Definition 

For AI applications in facility management, energy 

analysis, and emergency response, the accurate definition 

of spatial boundaries is paramount. The IFC standard 

defines entities like IfcSpace and uses relationship 

entities like IfcSpatialStructureElement to organize the 

model hierarchically. However, a common practical 

failure point is the generation of the IfcSpaceBoundary. 

Energy analysis AI models rely on precisely defined 

external and internal boundaries to calculate heat transfer 

and air exchange. If the space boundary generated from 

the architectural model is not topologically closed or if 

the boundary is incorrectly mapped to an adjacent wall or 

slab element, the energy simulation will produce 

incorrect results. Reviewing case studies consistently 

shows that: 

1. Missing or Incorrect Boundary Mapping: The 

link between the abstract IfcSpace entity and the specific 

faces of the surrounding geometric elements (walls, 

ceilings, floors) is often missing or incorrectly 

established during IFC export. This forces AI pre- 

processing routines to recalculate the space boundaries 

from scratch, which is computationally expensive and 

prone to its own set of geometric tolerance errors. The 

manual or automated recalculation of space boundaries 

predicts significant time expenditure in the energy 

modeling workflow. 

2. Handling of Openings and Penetrations: AI 

models for emergency path planning need to reliably 

identify openings (doors, windows, portals) and their 

connectivity to other spaces. If an IfcOpeningElement is 

not correctly referenced to the wall it penetrates, the path- 

finding AI will fail to recognize the traversable space. 

The complexity of dealing with non-rectangular openings 

or penetrations further strains the reliability of the 

underlying IFC geometry for automated spatial 

reasoning. The robustness of AI-driven path planning is 

strongly associated with the accurate, topological 

representation of traversable openings. 

The difficulty in reliably extracting geometric and 

topological data for computational tasks mandates the 

development of more robust IFC validation and repair 

tools. These tools, ideally powered by AI themselves, 

would preprocess the IFC file to automatically detect and 

correct topological inconsistencies before the data is fed 

into a high-value application like robotic control or FEM 

generation. Until such tools are widely adopted, the 

scalability of geometrically-dependent AI applications 

remains severely constrained by the unpredictable quality 

of the source IFC data. The current state of IFC geometric 

fidelity is seen to predict high technical overhead for 

integration with advanced computational systems. 

4.5. Limitations of the Current Review and Future 

Research Directions 

The systematic review, while comprehensive, is subject 

to certain limitations that inherently constrain the 

generalizability of the findings. The search strategy, 

despite being broad, is constrained by the available, peer- 

reviewed literature, potentially leading to a publication 

bias toward successful case studies or specific domains 

(e.g., energy analysis) where BIM-AI research is most 

mature. Furthermore, the reliance on publicly available 

articles may exclude industry-specific, proprietary 

research where AI integration with BIM/IFC data may be 

more advanced but is not disseminated in academic 

forums. 

Based on the synthesis, several crucial directions for 

future research are identified: 

1. Development of AI-Ready Validation Metrics: 

Future work should focus on establishing quantitative 

metrics and automated tools to assess the AI-Readiness 

Score of an IFC model based on the five pillars of the 

conceptual framework (Structural Consistency, Semantic 

Completeness, Geometric Fidelity, Temporal Coherence, 

and Contextual Richness). This would allow model 

authors to validate their exports before handover to an AI 

service. 

2. Automated Semantic Enrichment and Repair: 

Research into machine learning and natural language 

processing (NLP) models, specifically using large 

language models (LLMs) to automatically infer and 

enrich missing or ambiguous semantic properties in IFC 
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files, represents a high-impact area. Furthermore, the 

development of robust geometric repair algorithms that 

can automatically correct non-manifold geometry and 

small overlaps is essential for production-level AI 

deployment. 

3. Standardization of Ontologies: The focus should 

shift from standardizing the file format (IFC) to 

standardizing the ontology used for computational 

interpretation. This involves creating and maintaining 

open-source, domain-specific AEC knowledge graphs 

that can universally interpret MAIDR Psets, serving as 

the essential semantic middleware for truly scalable AI- 

BIM platforms. 

5. CONCLUSION 

This systematic review has critically assessed the state of 

BIM and IFC data readiness for integration with 

Artificial Intelligence in the AEC industry. The findings 

confirm the immense potential of AI applications across 

the design, construction management, and operations life 

cycles, yet simultaneously reveal a persistent and 

fundamental challenge: the semantic and topological gap 

between the IFC data standard and the strict requirements 

of advanced computational models. 

IFC, as a data exchange format, is necessary but 

insufficient for fully automated AI tasks. Current AI 

success stories are often predicated on labor-intensive 

data pre-processing, conversion to graph-based 

structures, and the utilization of custom, non-standard 

property sets, which collectively undermine the principle 

of universal interoperability. Specifically, the findings 

highlight critical limitations in the reliable representation 

of geometric fidelity, the consistent definition of spatial 

boundaries for analysis, and the inclusion of explicit 

semantic attributes necessary for machine inference. 

The path toward scalable, industry-wide AI deployment 

in AEC necessitates a two-pronged strategic evolution: 

first, a shift in industry practice towards mandatory 

adherence to standardized Minimum AI Data 

Requirements (MAIDR) during the BIM authoring 

phase; and second, a focus in research on developing 

semantic middleware, such as automated Knowledge 

Graph generators, and robust geometric validation and 

repair tools to ensure the five pillars of AI-Ready data— 

Structural Consistency, Semantic Completeness, 

Geometric Fidelity, Temporal Coherence, and 

Contextual Richness—are met before data ingestion. 

Addressing these fundamental data quality and semantic 

challenges is the crucial prerequisite for the successful 

industrialization of AI in the built environment. 
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