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ABSTRACT

Purpose: This systematic review aims to critically assess the current state of Building Information Modeling (BIM)
and Industry Foundation Classes (IFC) data interoperability and semantic readiness for scalable integration with
Artificial Intelligence (Al) applications across the Architecture, Engineering, and Construction (AEC) industry.
Design/Methodology/Approach: A Systematic Literature Review (SLR) was conducted, adhering to PRISMA
guidelines, analyzing key research focused on the intersection of BIM, IFC, and Al. A conceptual framework
categorizing Al-ready data into five pillars—Structural Consistency, Semantic Completeness, Geometric Fidelity,
Temporal Coherence, and Contextual Richness—was developed to synthesize findings.

Findings: While Al applications, notably in predictive maintenance, risk assessment, and generative design, exhibit
clear reliance on BIM/IFC data, the implementation is often impeded by significant data quality challenges. The core
issue lies in the semantic gap: IFC, designed primarily for data exchange, frequently lacks the explicit, complete, and
consistently structured information required for machine learning algorithms. Current approaches heavily rely on
labor-intensive pre-processing, graph-based data transformations, or domain-specific custom property sets,
compromising true interoperability. Furthermore, the handling of geometric and topological data within IFC
frequently suffers from inaccuracies that render it unsuitable for highly sensitive computational tasks like automated
quantity take-off and robot navigation.

Originality/Value: This review introduces a novel framework for assessing Al-ready BIM data and systematically
maps the specific data requirements of various Al applications to the current limitations of the [FC schema. It provides
a foundational critique, guiding future research toward developing the necessary semantic middleware, robust
geometric validation tools, and standardization efforts for achieving seamless BIM-AI integration.

KEYWORDS

Building Information Modeling, Industry Foundation Classes, Artificial Intelligence, Semantic Interoperability,
Construction Technology, Data Readiness, Knowledge Graph.

INTRODUCTION

industry faces immense pressure to enhance its
1.1. Contextualizing the Digital Transformation in performance metrics, which includes mitigating chronic
Construction issues such as cost overruns, project delays, and safety

incidents. Historically, the sector has lagged behind other
The Architecture, Engineering, and Construction (AEC)  industries in adopting digital technologies, often
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characterized by fragmented workflows and reliance on
traditional, document-centric processes. This landscape,
however, is rapidly evolving due to the imperative for
innovation driven by global urbanization and
sustainability mandates. At the forefront of this shift lies
Building Information Modeling (BIM), which
fundamentally changes how design, construction, and
operation information is created, managed, and shared
throughout the entire asset lifecycle. BIM is not merely a
geometric modeling tool; it serves as a shared knowledge
resource that provides a reliable basis for decisions
during the life cycle of a facility, defining an operational
paradigm shift for project delivery. The adoption of BIM
is associated with improved coordination, enhanced
communication, and a higher potential for error reduction
throughout the project lifecycle.

1.2. The Ascendance of Artificial Intelligence in AEC

Parallel to the rise of BIM, Artificial Intelligence (Al) has
emerged from theoretical concepts to a transformative
technology across various sectors. While the
foundational ideas of Al trace back to the mid-20th
century, modern advancements, specifically in Machine
Learning (ML) and Deep Learning (DL), have unlocked
unprecedented computational power, driven by
algorithmic sophistication and the proliferation of big
data. The AEC industry stands to benefit profoundly from
Al by moving beyond static models toward predictive,
proactive, and generative decision-making capabilities.
Current Al applications in AEC are wide-ranging,
encompassing sophisticated tasks such as optimizing
facility design through generative algorithms, predicting
maintenance needs for mechanical, electrical, and
plumbing (MEP) components, monitoring construction
site safety in real-time using computer vision, and
automating quality control processes through integrated
sensory data.

The ambition of these Al models—to learn, predict, and
optimize complex phenomena—places a critical
dependence on the quality and structure of the input data.
Specifically, Al algorithms require data that is not only
voluminous but also high-fidelity, semantically rich, and
computationally accessible. In the context of the built
environment, this data is primarily intended to be
supplied by the integrated models generated within the
BIM environment. Al’s ability to process vast quantities
of data predicts improved risk assessment and more
optimized resource allocation across complex
construction projects.

1.3. The Critical Role of IFC and Data Standards

The power of BIM is inherently constrained by the
challenge of interoperability, the ability for different
software applications to exchange and utilize data
reliably. This challenge is rooted in the proprietary nature
of many BIM authoring tools. To overcome this
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fragmentation, the Industry Foundation Classes (IFC)
standard was  developed by  buildingSMART
International. IFC is a vendor-neutral, non-proprietary
data model that describes building and construction
industry data, serving as the common language for the
digital exchange of information. Theoretically, IFC
should function as the key that unlocks the full potential
of BIM data for computational applications, including
Al. By providing a structured, hierarchical schema that
defines elements, properties, and relationships within a
building model, IFC offers a pathway to a singular,
accessible data source for diverse Al models across
different life cycle stages. The standardization offered by
IFC is expected to facilitate the smooth handover of
information between project stakeholders and disparate
software platforms.

1.4. Problem Statement and Research Gap

Despite the foundational potential of BIM and the
standardization provided by IFC, the seamless and
scalable integration of Al remains a significant hurdle. Al
models, particularly those based on advanced ML and
DL, demand data that is explicitly complete and
semantically unambiguous. The current reality reveals a
pervasive semantic gap between the information
structure defined by IFC (designed primarily for data
exchange/archiving) and the strict data requirements of
Al algorithms (designed for pattern recognition and
automated reasoning). Models exported via IFC often
suffer from structural inconsistencies, missing critical
non-geometric data (such as properties necessary for
energy analysis or cost estimation), and ambiguous
semantic classification. This insufficient readiness
necessitates significant, labor-intensive pre-processing,
compromising the efficiency and scalability of Al
deployment.

Existing literature touches upon specific BIM-AI
applications; however, a systematic, overarching
synthesis that critically evaluates the readiness of the
underlying IFC data structure through the exacting lens
of diverse Al requirements is largely absent. Specifically,
the literature lacks a unified framework that evaluates
both the semantic and geometric/topological fidelity of
IFC data required for advanced computational models.
This review seeks to address this critical gap by
systematically analyzing the current methodologies for
preparing BIM/IFC data for Al and identifying the
persistent interoperability and data quality challenges
that collectively impede scalable, industry-wide Al
deployment.

1.5. Research Objectives

This systematic review is structured around the following
objectives:

° To systematically map and classify current Al
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applications that specifically utilize BIM/IFC data,
identifying their core data dependencies.

) To critically analyze the state of semantic
enrichment and data completeness within the IFC schema
necessary for advanced computational models.

) To evaluate the common methodological
approaches for pre-processing, converting, and
transforming IFC data into a machine-consumable
format.

) To identify and articulate the persistent
interoperability and data quality challenges that
collectively impede the scalable and robust deployment
of Al throughout the AEC sector.

1.6. Structure of the Article

Following this introduction, Section 2 details the
Systematic Literature Review (SLR) Methodology,
including the search strategy, eligibility criteria, and the
conceptual framework developed for Al-ready data.
Section 3 presents the Results, classifying Al
applications, mapping data requirements, and
documenting common pre-processing methodologies and
identified challenges. Section 4 provides a deep
Discussion of the findings, focusing on the limitations of
IFC, the role of knowledge graphs, and the critical
importance of geometric fidelity. Finally, Section 5 offers
the Conclusion and proposes future research directions.

2. METHODS
2.1. Systematic Review Protocol

This study employed a Systematic Literature Review
(SLR) methodology, designed to provide a
comprehensive, unbiased, and repeatable synthesis of
existing research. The protocol adhered to the widely
accepted guidelines established by the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement, ensuring the highest
level of rigor and transparency in the selection and
reporting process. The SLR approach was chosen over a
narrative review to manage the vast and multidisciplinary
body of literature spanning construction technology,
computer science, and engineering management, thereby
minimizing selection bias and promoting evidence-based
conclusions.

2.2. Search Strategy and Data Sources

The search strategy targeted key electronic databases
recognized for their coverage of engineering, computing,
and construction literature, including Web of Science,
Scopus, and Google Scholar. The primary search query
was constructed using a combination of keywords,
separated by Boolean operators:
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(BIM OR "Building Information Model" OR IFC OR
"Industry Foundation Classes") AND ("Artificial
Intelligence"” OR "Machine Learning” OR "Deep
Learning" OR AI OR ML) AND (Construction OR AEC
OR "Built Environment")

This combination of terms was designed to capture
research that explicitly connects the foundational data
models of the built environment (BIM/IFC) with
advanced computational methods (AI/ML). The search
was refined to include only peer-reviewed journal
articles, conference proceedings, and reputable technical
reports published up to the cutoff date of the review. The
initial search yielded a substantial number of articles,
which were then subjected to rigorous screening.

2.3. Eligibility Criteria and Study Selection

The retrieved documents underwent a two-phase
selection process based on the following eligibility
criteria:

Inclusion Criteria:

1. The study must explicitly involve the application
or discussion of an AI/ML technique.

2. The study must utilize or directly discuss the use
of BIM or IFC data as the primary or critical input source
for the Al model.

3. The article must be published in English and be
a full-text peer-reviewed source (journal or conference

paper).

4. The article must be available in full text for
review.

Exclusion Criteria:

1. Studies focusing on general Al applications
without specific reference to BIM/IFC data.

2. Studies focusing purely on BIM implementation
without computational Al application.

3. Short abstracts, editorials, and non-academic
publications.

In the first phase, titles and abstracts were screened for
relevance to the core intersection of BIM, IFC, and Al In
the second phase, the full text of the remaining articles
was assessed against the inclusion criteria. Any conflicts
regarding inclusion were resolved through consensus
among the review team.

2.4. Data Extraction and Synthesis

For each included study, the following data points were
systematically extracted and recorded:
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) Al  Application Domain: (e.g.,
Scheduling, Energy Analysis, Generative Design)

Safety,

° Al Technique Employed: (e.g., Convolutional
Neural Networks, Support Vector Machines, Expert
Systems)

° BIM/IFC Version and Source: (e.g., [IFC4, Revit,
custom schema)

) Data Pre-processing/Transformation Method:
(e.g., graph conversion, feature engineering,
vectorization)

) Identified Data Challenges/Limitations: (The

specific issues encountered with the BIM/IFC data).

The data synthesis involved a rigorous thematic analysis.
Extracted challenges were clustered into recurring
themes to identify the most significant and pervasive
interoperability issues. This thematic clustering informed
the development of a conceptual framework which is
central to the subsequent analysis.

2.5. The Conceptual Framework for Al-Ready Data

To structure the analysis of the results, a conceptual
model defining the necessary characteristics of an "Al-
Ready" BIM model was established. This framework
posits that for BIM/IFC data to be successfully consumed
by sophisticated Al algorithms, it must satisfy five
critical pillars. The absence or weakness of any one pillar
predicts failure or significant friction in the Al integration
process.

1. Structural Consistency: Adherence to the
standardized IFC schema without model redundancy or
inconsistent entity usage, ensuring the computational
path is predictable. This relates to the formal compliance
of the data with the schema definition.

2. Semantic Completeness: The inclusion of all
necessary non-geometric properties (e.g., fire rating,
material strength, maintenance date) explicitly required
by the Al task, beyond basic geometric representation.
This addresses the richness of the information.

3. Geometric Fidelity: The accuracy, precision, and
topological correctness of the physical geometry, crucial
for tasks like quantity take-off and robot navigation. This
addresses the quality of the spatial model.

4. Temporal Coherence: The ability of the model to
represent or link to time-dependent data (4D BIM),
essential for scheduling, progress monitoring, and asset
lifecycle management.

5. Contextual Richness: The seamless integration
of external, real-world data sources (e.g., IoT sensor
readings, site photographs) with the BIM elements,
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necessary for predictive and operational Al models,
establishing the digital twin connection.

3. RESULTS

3.1. Classification of Al Applications Utilizing BIM/IFC
Data

The review of the collected literature revealed a strong
concentration of Al research across three primary AEC
domains, each with distinct data requirements and
vulnerabilities related to the IFC data source.

3.1.1. Design and Analysis (Generative Design, Code
Compliance Check)

Al applications in the design phase focus on automating
iterative tasks and optimizing performance outcomes.
Generative design utilizes algorithms to explore a vast
solution space based on performance criteria (e.g.,
structural load, daylighting, spatial layout), often
requiring highly structured parametric input data.
Automated code compliance checking relies on rule-
based or machine learning systems to flag potential
violations against building codes or project specifications
by comparing model properties against regulatory
requirements.

) Data Requirement Analysis: These applications
exhibit an extremely high demand for semantic
completeness and geometric fidelity. The Al models
must accurately and unambiguously identify specific
building elements (e.g., walls, doors, stairs) and their
related properties (e.g., fire rating, material). IFC’s
hierarchical structure and property sets are heavily
utilized here. However, studies show that models often
lack the specific, granular detail needed, compelling
researchers to develop complex, project-specific
ontologies or extend the IFC schema with custom
properties, thus undermining universal interoperability.
The success of automated code checking is directly
associated with the initial quality of property assignment
within the BIM model.

3.1.2. Construction Management (Scheduling, Cost
Prediction, Safety Monitoring)

In construction management, Al leverages BIM data to
enhance efficiency and mitigate risk. ML models have
been developed for predicting construction cost and
duration based on historical data extracted from project
models. Predictive maintenance planning for MEP
systems utilizes BIM data (component location, type)
integrated with IoT sensor data to forecast potential
failures. Furthermore, Al-driven safety systems often use
BIM geometry for collision detection, path planning for
unmanned ground vehicles (UGVs), and identifying
high-risk zones.
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) Data Requirement Analysis: The core
requirement here shifts toward Temporal Coherence and
Contextual Richness. Al scheduling models require an
explicit link between the 3D geometry and the time-based
activities (4D BIM). Safety and predictive maintenance
models necessitate the seamless fusion of static BIM
attributes with dynamic, real-time data streams (e.g.,
location, sensor readings). Studies reveal significant
difficulties in extracting reliable time-related parameters
directly from current IFC instances, often requiring the
use of middleware or external scheduling software that is
manually linked back to the model elements. The
accurate prediction of risks is predicted on the seamless
integration of geometrical model data with contextual site
information.

3.1.3. Facility Management and Operations (Energy
Efficiency, Digital Twin)

The operations phase benefits from Al integration into
Digital Twins for long-term asset performance. Models
for optimizing energy efficiency are prominent, requiring
detailed thermal properties, space boundaries, and
HVAC system information. Automated guidance
systems also rely on indoor path planning capabilities
derived from the building’s spatial model.

° Data Requirement Analysis: These applications
critically depend on the correct and precise representation
of space boundary data and semantic completeness
regarding building performance properties. A pervasive
challenge in this domain is the inaccuracy of space
boundary definitions within IFC models, which directly
impacts the reliability of energy simulation models.
Researchers consistently find they must manually verify
or reconstruct the spaces from the 3D geometry,
highlighting a significant limitation in the practical utility
of current IFC exports for energy-focused AI. The
accuracy of energy performance modeling is closely
associated with the correct topology of the building
elements as represented in the IFC file.

3.2. Mapping Data Requirements to [IFC Schema

The review indicates that the most frequently targeted
IFC entities are IfcProduct, IfcElement, and the
geometric representation items like
IfcProductDefinitionShape. Al models generally succeed
in classifying basic geometric objects but struggle with
the non-geometric, semantic attributes.

A crucial finding is the high reliance on custom property
sets (Psets) when attempting to meet the demands of
advanced Al. While IFC provides the structure for adding
properties, the absence of universally applied standard
Psets for specific domain tasks (e.g., a standardized Pset
for machine learning-relevant maintenance data) forces
project teams to create unique, non-standard attributes.
This process ensures the immediate utility of the data for
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a single project but simultaneously creates a significant
interoperability barrier for external AI models, which
cannot universally interpret these unique schema
extensions. The result is that a substantial portion of the
effort in BIM-AI research is devoted to manual data
augmentation and mapping post-IFC export, confirming
the inadequacy of the native IFC structure for many
cutting-edge Al tasks. This manual enrichment predicts a
higher friction point for scalable, multi-project Al
deployment.

3.3. Methodologies for Interoperability and Data Pre-
processing

To bridge the gap between the complex, textual-based
IFC file structure and the matrix/vector input required by
most Al models, various pre-processing methodologies
have been employed:

1. Graph-Based Transformation: This is one of the
most promising approaches. Researchers utilize
Knowledge Graphs (KGs) to represent BIM data. IFC’s
structure, which is inherently object-oriented and graph-
like (defining objects and their relationships), lends itself
well to KG conversion. This transformation allows Al
models to utilize the explicit relationships between
elements, providing a richer context than simple attribute
lists.

2. Vectorization and Feature Engineering: For tasks
like cost prediction or duration estimation, researchers
often flatten the IFC data into tabular features. This
typically involves manually engineering features (e.g.,
total wall area, count of windows per floor) that aggregate
the geometric and semantic data into numerical vectors
suitable for classical ML algorithms. This process,
however, risks losing the rich topological and relational
context inherent in the model.

3. Visual Programming Tools: The use of visual
programming  environments (e.g., Dynamo or
Grasshopper) is prevalent, enabling researchers to
automate the extraction and filtering of specific data
subsets from the model before exporting or transforming
them for Al input. This addresses model complexity but
remains constrained by the initial quality of the authoring
model.

3.4. Identified Data Quality and Semantic Challenges
The collective evidence points to three dominant data
quality challenges that persistently impede BIM-AI
integration:

3.4.1. Structural Inconsistency and Model Redundancy
The translation process from proprietary software to the
neutral IFC format is susceptible to errors and

inconsistencies. Models exported from different
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authoring tools, even when ostensibly compliant with the
same IFC standard (e.g., IFC4), can exhibit variations in
how entities are defined or aggregated. Furthermore,
within a single model, redundancy often occurs, such as
multiple instances of the same property, or the
inconsistent use of IfcSpace versus IfcZone, leading to
ambiguity for Al classifiers. Al models that expect a
predictable, structurally consistent input often fail when
exposed to the natural variability of real-world IFC
exports. This structural volatility predicts increased
complexity in developing universal Al parsers.

3.4.2. Semantic Ambiguity and Missing Data

This is perhaps the most fundamental challenge. Al
requires explicit semantics. If an element in an IFC file is
labeled with a generic class (e.g., IfcElementAssembly)
without the detailed, required properties, the Al model
cannot infer the meaning. Studies on automated code
checking consistently highlight the issue of missing
properties, such as fire ratings or accessibility
information, which are critical for the task but often
omitted during the design or modeling stage.
Furthermore, the generic nature of many IFC entity
names can lead to semantic ambiguity that demands
manual human intervention for accurate labeling, a non-
starter for large-scale automation. The lack of
standardized terminology for non-geometric parameters
is associated with higher data pre-processing effort.

3.4.3. Granularity Mismatch

The concept of Level of Detail (LOD) in BIM relates to
the geometric fidelity, while Level of Information Need
(LOIN) relates to the necessary semantic content. Many
Al applications require an LOD/LOIN that exceeds what
is typically produced for standard project milestones. For
instance, a detailed ML model for predictive equipment
failure needs  sub-component properties and
manufacturer data (high LOIN), which are rarely
included in standard IFC exports (low semantic
completeness). This mismatch in granularity forces
researchers to either simplify the Al task or invest
enormous effort in manually enriching the models. The
low LOIN in many IFC models predicts limited scope for
highly specialized Al applications.

4. DISCUSSION
4.1. Re-evaluating the IFC Standard for Al-Readiness

The findings strongly suggest that while IFC has
succeeded as a mechanism for data exchange, its current
structure, even in its most recent versions, presents
limitations when treated as a directly computable
knowledge base for advanced Al. The standard was
fundamentally designed to capture and transfer human-
readable design intent and geometric representation, not
necessarily to optimize data retrieval and relational
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querying for machine reasoning. The lack of inherent
mechanisms to define complex, non-geometric
relationships or temporal dependencies within the core
IFC schema hinders its application in dynamic Al tasks
like scheduling optimization or process simulation.
Future evolution of the IFC standard must move beyond
entity-property lists toward concepts that support richer,
domain-specific ontologies and explicit relationship
modeling to facilitate Al integration. This transition is
crucial for realizing the vision of a truly "Smart
Construction" environment where machine inference is a
seamless component of the digital workflow.

4.2. The Interplay of BIM, IFC, and Knowledge Graphs

The prevalence of graph-based methodologies in the
reviewed literature validates the hypothesis that an
intermediate, semantic layer is necessary to bridge the
IFC-AI gap. Knowledge Graphs (KGs) transform the
hierarchical IFC structure into a flexible, queryable graph
network (nodes and edges), where relationships are
explicitly defined and easily traversable by Al agents.
This approach successfully addresses the issues of
semantic ambiguity and structural inconsistency by
normalizing the data and adding an external, custom
ontology layer tailored to the Al task.

However, the current implementation of KGs relies
heavily on project-specific manual mapping and
ontology creation. The next crucial step involves
developing automated tools capable of generating KGs
from raw IFC files using industry-standard semantic web
technologies (e.g., RDF, OWL) and predefined, globally
accepted AEC ontologies. If the industry can standardize
the ontology used to interpret and enrich the IFC schema,
the resulting KGs could serve as the universal semantic
middleware necessary for scalable Al deployment. This
semantic layer predicts a substantial reduction in the data
preparation time for novel Al applications.

4.3. Addressing Data Completeness: The Custom Pset
Dilemma

The recurring reliance on custom property sets highlights
a critical tension: the need for project-specific detail
versus the mandate for universal interoperability. While
custom Psets are necessary to capture the unique
information required for a specialized Al model (e.g., an
ML classifier for a specific type of connection joint), their
unmanaged proliferation erodes the standardization that
IFC attempts to enforce.

To resolve this, the AEC industry, in partnership with
buildingSMART and Al researchers, must establish and
publish a set of Minimum Al Data Requirements
(MAIDR). These MAIDR could take the form of
standardized, domain-specific IFC Psets (e.g., a
"Pset Al Energy Analysis" or "Pset Al Safety Risk")
that define the mandatory minimum information required
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within a BIM model to enable common Al use cases. This
shift would provide model authors with a clear target for
data completeness, moving beyond general LOD
requirements to specific LOIN targets necessary for
machine  consumption, thereby managing the
proliferation of incompatible custom Psets. This
standardization effort is expected to improve the
reusability of BIM data across different Al platforms.

4.4. A Deeper Dive: The Critical Role of IFC Geometric
and Topological Data in Al

While much of the discussion surrounding Al-readiness
focuses on the semantic and non-geometric properties,
the core geometric representation embedded within the
IFC file presents its own set of profound challenges for
computational analysis. Geometric data is not merely for
visualization; it is the fundamental input for a wide array
of Al-driven tasks, including automated quantity take-
off, clash detection, robot path planning, visual
monitoring, and structural analysis model generation.
The limitations in how IFC handles geometric fidelity
and topology directly impede the successful execution
and scalability of these applications.

4.4.1. The Ambiguity of Boundary Representation (B-
Rep) in [FC

IFC primarily utilizes Boundary Representation (B-Rep)
to define the 3D geometry of building elements. B-Rep
describes a solid object by defining the boundaries that
separate its interior from its exterior—typically faces,
edges, and vertices. While mathematically sound, the
translation of complex B-Rep geometry from proprietary
modeling kernels into the neutral IFC format is a
common source of error. Al models, particularly those
performing automated spatial reasoning or structural
analysis, require mathematically perfect solid geometry.

Errors that frequently occur in the B-Rep conversion
include:

° Non-Manifold Geometry: A condition where the
solid geometry is mathematically ill-defined (e.g., two
faces share only an edge, or multiple solids share a single
vertex). When an Al algorithm, such as one for Finite
Element Model (FEM) generation, attempts to mesh a
non-manifold body, the process often fails or produces
unreliable results, highlighting the need for clean
topological data. The occurrence of non-manifold
geometry in IFC models predicts failure in automated
structural meshing algorithms.

° Gaps and Overlaps: Slight numerical
inaccuracies during the export process often result in
small gaps between adjacent components (e.g., a wall and
a slab) or slight overlaps. These errors are often invisible
to the human eye in a BIM viewer but are catastrophic for
automated quantity take-off (QTO) models, which rely
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on precise boundary intersections for volumetric
calculations. An Al system attempting to calculate the
required sealant volume, for example, would return an
unreliable result if the gap tolerance is not modeled
explicitly and correctly in the IFC file. The presence of
these micro-gaps is associated with significant
overestimation or underestimation in automated QTO
processes.

) Face Normal Vectors: For advanced visual Al
and robotic applications, the direction of the surface
normal vectors for the B-Rep faces is critical. Computer
vision algorithms using geometric reconstruction rely on
these vectors to understand orientation and visibility.
Inconsistencies in IFC exports can lead to "flipped"
normal vectors, which confuse these Al systems, leading
to inaccurate object recognition or failed robot navigation
paths, particularly in complex interior environments.
Incorrect normal vector representation predicts errors in
visual simultaneous localization and mapping (SLAM)
systems.

The challenge is further compounded because the IFC
specification allows for multiple ways to define geometry
(e.g., B-Rep, Swept Solid, Clipped Half Spaces), and the
choice of representation can significantly affect the
downstream Al utility. Swept Solids are often simpler
and more computationally efficient for basic objects but
fail to capture the complexity required for detailed
mechanical parts, necessitating the use of the more
complex, but error-prone, B-Rep. The lack of a
standardized geometric representation across all elements
predicts a need for multi-protocol geometric parsers in Al
frameworks.

for

4.4.2. Geometric Abstraction

Efficiency

Computational

Al models, especially those operating at scale or in real-
time environments (like on-site robotic systems), cannot
afford to process the full, complex geometry of a high-
LOD BIM model. The sheer number of polygons in a
large construction project IFC file is computationally
prohibitive. This necessitates a process of geometric
abstraction, where the IFC data must be simplified
without losing the critical topological relationships.

A key methodological challenge for researchers involves
automatically converting the dense 3D B-Rep into a
sparse,  graph-based  topological model. This
transformation focuses on representing the connectivity
and adjacency of building elements rather than their
precise physical shape. For example, a Directed
Representative Graph (DRG) can be generated from
MEP systems using BIM data, allowing an Al model to
quickly analyze flow, connectivity, and system paths
without having to perform complex geometric
intersection calculations. The nodes in this graph
represent components (e.g., a pipe, a valve), and the
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edges represent their physical connections. This shift
from geometric fidelity to topological fidelity is crucial
for the efficient execution of path planning, interference
checking, and structural network analysis Al models.
Topological models are predicted to significantly
enhance the computational speed of network-based Al
analyses.

However, the Al must first reliably extract the correct
connectivity from the IFC file. Errors in the IFC model,
such as a component’s connection port not being
perfectly aligned in the B-Rep, can lead to a false
negative (a missing connection) in the generated
topological graph, rendering the subsequent Al analysis
useless. Researchers are increasingly turning to advanced
graph-based methodologies that incorporate tolerance
limits to infer connection intent, even when the
underlying IFC geometry is slightly flawed. This
inference, however, introduces a level of uncertainty into
the Al result, as the model is making an assumption based
on proximity rather than explicitly modeled connectivity.
This reliance on tolerance-based inference suggests that
the semantic completeness of the connectivity data in the
source model is often lacking.

4.4.3. The Challenge of Spatial Reasoning and Boundary
Definition

For AI applications in facility management, energy
analysis, and emergency response, the accurate definition
of spatial boundaries is paramount. The IFC standard
defines entities like IfcSpace and uses relationship
entities like IfcSpatialStructureElement to organize the
model hierarchically. However, a common practical
failure point is the generation of the IfcSpaceBoundary.

Energy analysis Al models rely on precisely defined
external and internal boundaries to calculate heat transfer
and air exchange. If the space boundary generated from
the architectural model is not topologically closed or if
the boundary is incorrectly mapped to an adjacent wall or
slab element, the energy simulation will produce
incorrect results. Reviewing case studies consistently
shows that:

1. Missing or Incorrect Boundary Mapping: The
link between the abstract IfcSpace entity and the specific
faces of the surrounding geometric elements (walls,
ceilings, floors) is often missing or incorrectly
established during IFC export. This forces Al pre-
processing routines to recalculate the space boundaries
from scratch, which is computationally expensive and
prone to its own set of geometric tolerance errors. The
manual or automated recalculation of space boundaries
predicts significant time expenditure in the energy
modeling workflow.

2. Handling of Openings and Penetrations: Al
models for emergency path planning need to reliably
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identify openings (doors, windows, portals) and their
connectivity to other spaces. If an IfcOpeningElement is
not correctly referenced to the wall it penetrates, the path-
finding Al will fail to recognize the traversable space.
The complexity of dealing with non-rectangular openings
or penetrations further strains the reliability of the
underlying IFC geometry for automated spatial
reasoning. The robustness of Al-driven path planning is
strongly associated with the accurate, topological
representation of traversable openings.

The difficulty in reliably extracting geometric and
topological data for computational tasks mandates the
development of more robust IFC validation and repair
tools. These tools, ideally powered by Al themselves,
would preprocess the IFC file to automatically detect and
correct topological inconsistencies before the data is fed
into a high-value application like robotic control or FEM
generation. Until such tools are widely adopted, the
scalability of geometrically-dependent Al applications
remains severely constrained by the unpredictable quality
of the source IFC data. The current state of IFC geometric
fidelity is seen to predict high technical overhead for
integration with advanced computational systems.

4.5. Limitations of the Current Review and Future
Research Directions

The systematic review, while comprehensive, is subject
to certain limitations that inherently constrain the
generalizability of the findings. The search strategy,
despite being broad, is constrained by the available, peer-
reviewed literature, potentially leading to a publication
bias toward successful case studies or specific domains
(e.g., energy analysis) where BIM-AI research is most
mature. Furthermore, the reliance on publicly available
articles may exclude industry-specific, proprietary
research where Al integration with BIM/IFC data may be
more advanced but is not disseminated in academic
forums.

Based on the synthesis, several crucial directions for
future research are identified:

1. Development of Al-Ready Validation Metrics:
Future work should focus on establishing quantitative
metrics and automated tools to assess the Al-Readiness
Score of an IFC model based on the five pillars of the
conceptual framework (Structural Consistency, Semantic
Completeness, Geometric Fidelity, Temporal Coherence,
and Contextual Richness). This would allow model
authors to validate their exports before handover to an Al
service.

2. Automated Semantic Enrichment and Repair:
Research into machine learning and natural language
processing (NLP) models, specifically using large
language models (LLMs) to automatically infer and
enrich missing or ambiguous semantic properties in IFC
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files, represents a high-impact area. Furthermore, the
development of robust geometric repair algorithms that
can automatically correct non-manifold geometry and
small overlaps is essential for production-level Al
deployment.

3. Standardization of Ontologies: The focus should
shift from standardizing the file format (IFC) to
standardizing the ontology used for computational
interpretation. This involves creating and maintaining
open-source, domain-specific AEC knowledge graphs
that can universally interpret MAIDR Psets, serving as
the essential semantic middleware for truly scalable Al-
BIM platforms.

5. CONCLUSION

This systematic review has critically assessed the state of
BIM and IFC data readiness for integration with
Artificial Intelligence in the AEC industry. The findings
confirm the immense potential of Al applications across
the design, construction management, and operations life
cycles, yet simultaneously reveal a persistent and
fundamental challenge: the semantic and topological gap
between the IFC data standard and the strict requirements
of advanced computational models.

IFC, as a data exchange format, is necessary but
insufficient for fully automated Al tasks. Current Al
success stories are often predicated on labor-intensive
data pre-processing, conversion to graph-based
structures, and the utilization of custom, non-standard
property sets, which collectively undermine the principle
of universal interoperability. Specifically, the findings
highlight critical limitations in the reliable representation
of geometric fidelity, the consistent definition of spatial
boundaries for analysis, and the inclusion of explicit
semantic attributes necessary for machine inference.

The path toward scalable, industry-wide Al deployment
in AEC necessitates a two-pronged strategic evolution:
first, a shift in industry practice towards mandatory
adherence to standardized Minimum Al Data
Requirements (MAIDR) during the BIM authoring
phase; and second, a focus in research on developing
semantic middleware, such as automated Knowledge
Graph generators, and robust geometric validation and
repair tools to ensure the five pillars of Al-Ready data—
Structural ~ Consistency, Semantic ~Completeness,
Geometric  Fidelity, Temporal Coherence, and
Contextual Richness—are met before data ingestion.
Addressing these fundamental data quality and semantic
challenges is the crucial prerequisite for the successful
industrialization of Al in the built environment.
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