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ABSTRACT

This study addresses the limitation of traditional dynamic pricing models in e-commerce by developing a novel,
hybrid Sentiment-Aware Dynamic Pricing (SADP) framework that integrates real-time customer sentiment alongside
core transactional and competitor features. A comprehensive, multimodal dataset, including multilingual customer
reviews, was subjected to a robust preprocessing pipeline (including SMOTE for imbalance handling) and extensive
feature engineering (e.g., competitor price difference, estimated price elasticity of demand). Multiple advanced
machine learning models were trained and rigorously evaluated using a Bayesian Optimization strategy and Time
Series Cross-Validation. The XGBoost model significantly outperformed all competitors, achieving superior metrics
(R2: 0.97, MAE: 1.29, RMSE: 1.65). Crucially, the integration of sentiment features was associated with a
quantifiable improvement in prediction accuracy compared to models using only numerical data, demonstrating the
ability to capture emotional drivers of purchasing behavior. Both XGBoost and Neural Networks demonstrated low
latency, confirming their suitability for real-time, scalable deployment in live e-commerce pricing engines. This
research presents one of the first empirically validated dynamic pricing frameworks to successfully integrate
sentiment analysis for enhanced predictive accuracy, offering a proven, scalable architecture for next-generation
revenue management.

Keywords: Dynamic Pricing, Machine Learning, XGBoost, Sentiment Analysis, E-Commerce, Real-Time Pricing,
Revenue Management.

I. Introduction The evolution of e-commerce has necessitated a
paradigm shift from these rudimentary methods to

1.1 Background and Evolution of Dynamic Pricing
sophisticated, algorithmic approaches. Early dynamic

(DP)
pricing mechanisms in the online retail sector focused

In the highly competitive landscape of modern digital primarily on inventory levels and time-based
commerce, the ability to rapidly adjust product prices dijscounts. However, the sheer volume of data
in response to shifting market conditions is generated by online transactions, competitor
paramount to survival and profitability. This practice, ~scraping, and user behavior has been associated with
known as Dynamic Pricing (DP), moves beyond static  the pathway for the application of Machine Learning
or seasonal adjustments to leverage real-time data for (ML) to transform DP from a reactive strategy into a
optimized revenue management,. Historically, pricing proactive, predictive science, Modern ML models
decisions were guided by simple cost-plus models or ;1o retailers to simultaneously analyze hundreds of
fixed rule-sets that proved inadequate for capturing variables—including competitor prices, time-of-day
the volatile nature of consumer demand and effects, and historical sales velocity—to calculate an
aggressive competitor actions in the digital realm. optimal price point for a specific product at a specific
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moment in time. The core economic objective remains
maximizing revenue and margin while preserving
high customer satisfaction and maintaining market
competitiveness,

1.2 Review of ML Approaches in Dynamic Pricing

The contemporary academic literature on DP is
predominantly divided into two ML categories:
predictive and prescriptive models.
models focus on forecasting key variables, such as
short-term demand, price elasticity, or the probability
of a sale at a given price point. Algorithms like Linear
Regression, Random Forests, and Gradient Boosting
Machines (GBMs) are widely deployed for this task,
leveraging structured data to estimate the outcome of
a pricing action,. More advanced techniques, notably
Deep Neural Networks (NNs), have also been adapted
to capture highly non-linear relationships and
interactions within complex feature spaces.

Predictive

A significant portion of recent research focuses on
prescriptive models, which are designed to
recommend the optimal price action rather than just
predicting an outcome. Deep Reinforcement Learning
(DRL) models, such as those employing Q-learning or
policy gradient methods, have emerged as a state-of-
the-art solution for this challenge,,. These agents treat
pricing as a sequential decision-making process,
learning the best pricing policy by interacting with a
simulated or real-world environment to maximize
cumulative reward (revenue). For instance, DRL has
been applied effectively to autonomous resource
management, demonstrating its capability in
optimizing continuous actions over time, a principle
highly relevant to pricing. While DRL presents
significant promise for price optimization, accurate
price prediction remains the fundamental building
block—a less accurate prediction of demand or
elasticity is associated with suboptimal subsequent
prescriptive actions. This highlights the critical need
for highly accurate predictive models that can serve
as the reliable foundation for any prescriptive system.

1.3 Identifying the Core Research Gap: The Sentiment
Blind Spot

Despite the sophisticated ML techniques now
employed, a persistent limitation in most existing
dynamic pricing frameworks is their reliance
primarily on objective, numerical data. Models

typically ingest features relating to price, inventory,
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traffic, and temporal patterns. While critical, this data
only captures the outcome of purchasing behavior,
often failing to account for the transient, emotional
drivers that are associated with consumer readiness
to purchase or willingness to pay. A sudden shift in
public perception following a product review, a viral
social media trend, or a change in post-purchase
satisfaction is rarely reflected quickly or accurately in
raw sales metrics alone.

The research gap is thus twofold:

1. Neglect of Emotional Context: Most models
operate with a sentiment blind spot, failing to
systematically integrate the qualitative, real-
time pulse of customer mood derived from
reviews, feedback, and social media. This
omission means models may miss crucial signals
that might indicate a sharp, unpredicted spike in
demand (due to high satisfaction) or an
unexpected drop (due to quality concerns), often
resulting in suboptimal pricing decisions.

2. Lack of Empirical Best Practice: There is a need
for a rigorous, comparative study that not only
integrates sentiment but also validates which
modern ML architecture—specifically the
powerful yet highly efficient tree-based methods
like XGBoost—provides the most accurate, low-
latency prediction engine suitable for live, real-
time deployment, particularly
when facing complex, multimodal data.

e-commerce

This study directly addresses these gaps by proposing
and validating a novel, Sentiment-Aware Dynamic
Pricing (SADP) framework that elevates customer
feedback to a core feature, moving beyond simple
numerical correlations to harness emotional context.

1.4 Research Objectives and Core Contributions

The primary objective of this research is to develop,
implement, and rigorously evaluate a hybrid,
Sentiment-Aware Dynamic Pricing (SADP)
framework leveraging advanced machine learning to
achieve state-of-the-art price prediction accuracy for
real-time e-commerce deployment.

The specific contributions of this work are:

1. A Novel SADP Framework: Designing and testing
a system for the robust
multilingual customer sentiment data into a
comprehensive ML feature set, providing

integration of
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empirical evidence that sentiment is associated
with enhanced predictive accuracy.

2. Performance Validation and Model Selection:
Conducting a thorough comparative
performance analysis that demonstrates the
superior accuracy of the XGBoost model (: 0.97,
MAE: 1.29, RMSE: 1.65) over Neural Networks
and other established baselines for this
multimodal, high-dimensional problem.

3. Comprehensive Feature Engineering: Detailing a
reproducible strategy for robust feature
engineering, including the creation of dynamic,
predictive features like the estimated price
elasticity of demand and nuanced competitor
price differences.

4. Real-Time Deployment Blueprint: Validating the
resulting model's low latency and scalability in
simulation, supporting its immediate viability
for integration into live e-commerce pricing
engines.

[I. Methodology

The successful implementation of a sentiment-aware
dynamic pricing model rests on a meticulous, multi-
stage methodology encompassing multimodal data
integration, a robust preprocessing pipeline, and
rigorous comparative modeling.

2.1 Data Sourcing and Integration

The foundation of the SADP framework is a rich,
multimodal dataset collected from a prominent e-
commerce platform over an 18-month period. This
dataset is structured around the product-time-slot
unit of analysis and comprises three primary streams:

1. Transactional and Inventory Data: Records of
historical sales volume, final transaction price,
original listing price, inventory levels, and
product category information.

2. Competitor Intelligence Data: Time-stamped
data scraped from primary competitor websites,
detailing their selling prices, promotional flags,
and estimated stock levels. This allows for the
calculation of the Competitor price difference, a
crucial feature.

3. Customer Feedback Data: A vast corpus of
multilingual customer reviews and product

This data

generating the sentiment feature. The decision

to incorporate multilingual reviews was made to
ensure the model’s generalizability to the global

ratings. stream is critical for
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scale of e-commerce operations, where user
feedback originates from diverse linguistic
backgrounds.

2.2 Robust Preprocessing Pipeline

Achieving the high predictive accuracy required for
real-time deployment necessitates a comprehensive
and robust preprocessing pipeline to ensure data
quality and model readiness.

2.2.1 Handling Missing Values, Outliers, and Duplicates

Missing values, particularly in competitor stock levels
or certain time-dependent metrics, were handled
using both simple imputation (mode/median for
static attributes) and more advanced techniques like
Multiple Imputation by Chained Equations (MICE) for
dependent time-series variables. Outliers, identified
in sales velocity and price distribution (e.g.,
promotional price errors), were addressed using
Interquartile Range (IQR)-based capping to mitigate
their disproportionate influence on model training
without discarding valuable extreme event data.
Duplicate entries resulting from data logging errors
were systematically identified and removed.

2.2.2 Addressing Imbalance and Skewness

In a typical e-commerce setting, extreme demand
events—such as viral product interest or aggressive
competitive price drops—are rare but highly
consequential. This often leads to a class imbalance
problem where the model is over-trained on average
behavior and wunderprepared for critical high-
volatility situations. To counter this, techniques like
SMOTE (Synthetic ~ Minority =~ Over-sampling
Technique) were applied to the minority classes (e.g.,
extreme price change events or high-demand
periods). This ensured that the model could learn the
complex decision boundaries associated with these
commercially significant, yet infrequent, scenarios.

2.2.3 Data Encoding and Scaling

Categorical features, such as product category and
brand, were primarily encoded using Target
Encoding, which leverages the relationship between
the category and the target variable (price/demand)
to reduce dimensionality while preserving predictive
power. Numerical features were standardized (Z-
score normalization) to ensure all inputs contributed
equally to the learning process, particularly for
distance-based models like Neural Networks.
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2.3 Comprehensive Feature Engineering

The success of a predictive pricing model is directly
proportional to the quality of its features. This study’s
methodology  emphasizes  the creation of
sophisticated, predictive features that capture
economic theory, market context, and consumer
sentiment.

2.3.1 Economic and Competitor Features

Beyond raw price and volume, several features rooted
in economic principles were engineered:

e Estimated Price Elasticity of Demand (PED): This
critical feature was approximated by calculating
the local elasticity at the product-time level using
rolling windows of past price changes and
corresponding demand shifts. This provides a
dynamic, real-time indication of consumer price
sensitivity, a core input for pricing decisions.

e Competitor Price Difference: Calculated as the
difference between the focal product's price and
the average price of its top three direct
competitors. Normalizing this value provided a
clear metric of market position.

e Financial
detailing Revenue per unit and the Discount
percentage currently applied were included to
help the model learn the complex relationship
between promotional depth and sales volume.

and Discount Features: Features

2.3.2 Temporal and Contextual Features

To capture time-based demand effects, a range of
temporal features (hour of day, day of week, day of
month, week of year) were extracted. Furthermore,
promotional flags were created to explicitly signal
known events such as Black Friday, seasonal sales, or
limited-time offers, enabling the model to account for
these predictable demand anomalies.

2.3.3 Sentiment Feature Generation (The Core Novelty)

The a key
methodological contribution. The customer reviews

sentiment feature integration is
corpus underwent a dedicated Natural Language
Processing (NLP) pipeline:

1. Text Preprocessing and Multilingual Analysis:
Reviews were cleaned (stop-word removal,
dedicated
multilingual transformer model was employed
to process languages
simultaneously, ensuring all user feedback was

stemming/lemmatization). A

text in various
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captured,

2. Sentiment Scoring: Each review was assigned a
numerical sentiment score (ranging from highly
negative to highly positive) based on its
emotional tone.

3. Aggregation and Integration: The individual
review scores were then aggregated at the
product-time-slot level—a critical step. We
calculated a rolling average sentiment score for
the last seven days for each product. This rolling
score served as the sentiment feature input for
the final pricing model, providing a dynamic,
numerical representation of current customer
satisfaction and market mood, capable of
capturing emotional drivers.

2.4 Modeling Framework and Selection

The selection of the appropriate modeling framework
is paramount to generating accurate, real-time price
predictions from our multimodal, high-dimensional
dataset. We systematically evaluated five distinct
models, categorized into baseline methods, advanced
gradient boosting, and deep learning, to establish a
robust comparative benchmark. The goal was not
merely to identify a top performer, but to understand
why a particular architecture excelled in capturing
the non-linear, interacting effects of transactional,
sentiment, and competitor features.

2.4.1 Baseline Models and Preliminary Analysis

The comparative analysis began with two
foundational models to establish the floor for
predictive performance: Linear Regression and
Random Forest.

A. Linear Regression (LR): This served as the primary
benchmark to assess the degree of linear separability
within the feature space. The LR model, attempting to
fit a relationship of the form:

where is the predicted optimal price, are the input

features (including our engineered sentiment,
elasticity, and competitor features), and are the
learned coefficients. As expected, LR demonstrated
the weakest performance, achieving an of only in the
preliminary analysis. This poor fit conclusively
indicated that the relationship between pricing
features and demand is overwhelmingly non-linear
and driven by complex interactions that are often not

captured by simple additive terms.
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B. Random Forest (RF): The RF model, a fundamental
ensemble learning technique, was introduced as a
non-linear baseline. RF builds a multitude of decision
trees during training and outputs the mean prediction
(for regression tasks) of the individual trees. This
approach inherently manages non-linearity and
feature interaction through recursive partitioning of
the feature space. The use of bagging (bootstrap
aggregating) to train each tree on a different subset of
the training data, combined with random feature
selection at each split, provides robustness against
overfitting. While demonstrating a
improvement over LR with an of , RF's inherently
parallel structure and averaging mechanism often
lead to an inability to fully correct the errors of
preceding trees, limiting its ultimate predictive power
compared to sequential ensemble methods.

marked

2.4.2 The XGBoost Architecture for Pricing Prediction

The Extreme Gradient Boosting (XGBoost)
framework was chosen as the principal advanced
model due to its demonstrated scalability,

computational efficiency, and superior performance
in structured data prediction competitions. XGBoost
is an optimized distributed gradient boosting library
designed to be highly flexible and portable. It operates
under the principle of sequential ensemble learning,
where new models are iteratively added to correct the
residual errors made by previously trained models,.

A. Mechanics of Gradient Boosting: At its core,
XGBoost minimizes a specified objective function,
which is a combination of a loss function (measuring
the difference between the prediction and the target,
) and a regularization term () that controls the
complexity of the model:

The key optimization is that, instead of optimizing the
loss function directly, XGBoost uses the second-order
Taylor expansion of the loss function. This allows for
the incorporation of both the first-order gradient

statistics (the residual errors) and the second-order
statistics (the curvature of the loss function, or the
Hessian), providing a faster convergence path and
better handling of non-convex loss surfaces.

The objective function at step can be approximated
as:

where and are the first and second derivatives of the
loss function with respect to the prediction, and is the
tree being added at step This sophisticated
optimization allows XGBoost to be extremely precise
in minimizing prediction errors.

B. The Regularization Term (): The complexity of the
through a dedicated
regularization component, which penalizes the
number of leaves () and the magnitude of the scores
() in the new tree :

model is controlled

The hyperparameters (minimum loss reduction
required to make a further partition on a leaf node of
the tree) and (L2 regularization term) are essential
for preventing the model from overfitting to the noise
in the transactional and sentiment data. This inherent
control mechanism, coupled with the precision of the
second-order optimization, is the fundamental reason
XGBoost achieved superior stability and predictive
accuracy compared to other models in this study,

2.4.3 Comprehensive Hyperparameter Optimization
Strategy

Achieving the benchmark of with the XGBoost model
required a meticulous and systematic approach to
hyperparameter tuning. Given the complexity and
number of interacting parameters, we employed a
Bayesian Optimization strategy, which is more
efficient than traditional Grid Search as it models the
objective function (in our case, the minimized RMSE
on the validation set) to guide the search towards
promising areas of the parameter space.

A. Hyperparameters and Tuning Ranges: The optimization focused on key parameters governing the
structure, regularization, and stability of the boosting process:

Parameter Role Optimization Significance for
Range/Value SADP Framework
objective Defines the loss reg:squarederror Standard for price

https://aimjournals.com/index.php/ijidml
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function to be
minimized.

prediction
(regression);
minimized RMSE.

eval_metric

Metric used for
monitoring training
progress and early
stopping.

rmse

Directly relates to
the dollar error,
crucial for
commercial viability.

n_estimators

The total number of
boosting rounds
(trees).

(with early
stopping)

High number allows
full error correction;
early stopping
prevents overfitting.

max_depth

Maximum depth of a
tree.

Controls model
complexity; tuned to
5 for optimal

balance.
learning_rate () Step size shrinkage Critical for stability;
used in updating low values () help
weights. prevent jumping

over local optima.

gamma ()

Minimum loss
reduction required
for a split (tree
complexity).

Controlled tree
pruning; important
for handling noisy

sentiment data.

lambda () (L2 Reg.)

L2 regularization
term on weights.

Essential for robust
generalization on
sparse feature
subsets.

subsample

Ratio of training
data randomly
sampled for building
trees.

Used to combat
overfitting;
optimized to 0.75.

colsample_bytree

Ratio of features
randomly sampled
for building trees.

Ensures diversity
across trees,
mitigating
collinearity between
engineered features.

https://aimjournals.com/index.php/ijidml
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B. Optimal Parameter Configuration: The final,
optimized configuration that was associated with
MAE: 1.29 and RMSE: 1.65 employed a low learning
rate () combined with a high number of estimators
(1,500 effective rounds) and moderate regularization
()- This configuration represents a highly cautious and
stable  boosting prioritizing  small,
incremental improvements over aggressive error
correction, which is necessary when dealing with
noisy, real-time input features like the aggregated
sentiment scores. The low helps guarantee that the
model learns the highly complex, non-linear feature
interactions, such as how the impact of a discount
percentage is mediated by both the competitor price
difference and the current customer sentiment level.

process,

C. Cross-Validation Strategy (Time Series Split): Given
the inherent temporal nature of dynamic pricing data,
a simple K-Fold cross-validation would introduce
look-ahead bias, where the model trains on future
data to predict the past. To maintain the integrity of
the time-series forecasting problem, we employed a
Time Series Cross-Validation (TSCV) strategy. This
method ensures that the validation set always follows
the training set chronologically, simulating the real-
world deployment scenario where the model must
learn from historical data to predict future prices. The
training window was kept constant (e.g., 12 months),
and the validation window was a rolling window (e.g.,
1 month), strictly preserving causality.

2.4.4 Comparative Deep Learning Architecture

To provide arigorous benchmark against the state-of-
the-art in machine learning, we implemented a
dedicated Deep Neural Network (NN) architecture.
While tree-based methods often excel at tabular data,
NNs are theoretically capable of discovering more
abstract, latent feature representations, particularly
beneficial for integrating high-dimensional inputs like
the sentiment feature (which is the output of an
internal NLP model).

A. Network Topology and Layer Specification: The
selected architecture was a Multi-Layer Perceptron
(MLP), designed with five dense layers to balance
complexity with training time:

e Input Layer: 128 neurons, corresponding to the
total number of engineered features (including
the one-hot encoded categorical features and the

https://aimjournals.com/index.php/ijidml

numerical sentiment score).

e Hidden Layer 1: 64 neurons, activated by the
Rectified Linear Unit (ReLU) function.
Hidden Layer 2: 32 neurons, activated by ReLU.
Hidden Layer 3: 16 neurons, activated by ReLU.
Output Layer: 1 neuron (representing the
predicted optimal price), activated by a linear
function, appropriate for a regression task.

B. Regularization and Dropout: To combat overfitting,
which is a common challenge with deep networks on
structured data, L2 kernel regularization was applied
to all hidden layers. Furthermore, Dropout (rate of )
was implemented after the first two hidden layers,
randomly deactivating a fraction of neurons during
training to prevent co-adaptation and force the
network to learn more robust feature
representations.

C. Optimization and Learning Rate Policy: The
network was trained using the Adam optimizer due to
its adaptive learning rate capabilities, which are
beneficial for fast convergence. A dynamic learning
rate policy was implemented, starting with an initial
rate of and employing a ReduceLROnPlateau callback.
This strategy, inspired by methods proven effective in
stabilizing  deep network
automatically reduces the learning rate when the

neural training,
validation loss stops improving, ensuring the network
continues to search for optimal weights without
overshooting the minimum. Despite this meticulous
optimization, the NN ultimately yielded an of, falling
short of the XGBoost performance, which supports
the selection of the tree-based ensemble approach for
the specific characteristics of our e-commerce data.

2.4.5 Training Protocol and Stability Measures

The final training protocol incorporated several
measures to ensure the integrity, stability, and
commercial viability of the models.

A. Loss Function: For both the XGBoost and Neural
Network regression tasks, the primary loss function
used during training was the Mean Squared Error
(MSE). The MSE is advantageous as it penalizes larger
prediction errors quadratically (since ), aligning with
the commercial objective of minimizing significant
pricing mistakes which often incur the highest
penalty in lost revenue or customer goodwill.

B. Early Stopping: To prevent the models, particularly
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the iterative XGBoost and the high-capacity NN, from
overfitting to the training data noise, an Early
Stopping mechanism was strictly enforced. Training
was halted if the RMSE on a dedicated, unseen
validation set did not improve for a defined number
of epochs (patience = 50 for NN, 100 rounds for
XGBoost). This ensures the model generalizes
optimally to new market conditions.

C. Computational Environment and Scalability: All
models were trained and benchmarked within a
distributed computing environment optimized for
high-volume data processing. This setup validated
that the selected architectures—specifically XGBoost,
known for its distributed processing capabilities—
are inherently scalable and capable of rapid re-
training, a prerequisite for production deployment
where models must be frequently updated to account
for new data and evolving market dynamics. The

validation of low-latency performance in the

subsequent results section (Section 3.3) directly
stems from this efficient training and architectural
selection.

II1. Results

The analysis of the comparative model performance
and the empirical validation of the sentiment feature
integration confirms the potential of the proposed
SADP framework.

3.1 Comparative Model Performance Analysis

The models were benchmarked on a validation
dataset, with the results unequivocally establishing
the superior performance of the Gradient Boosting
approach.

3.1.1 Overall Prediction Accuracy

The primary comparison of all models revealed that XGBoost achieved the best performance across all key

prediction metrics. The results confirm its suitability for accurately capturing the complex, non-linear

dependencies inherent in e-commerce pricing data,

Model MAE (Lower is RMSE (Lower is (Higher is Better)
Better) Better)
XGBoost 1.29 1.65 0.97
Neural Network 1.48 1.95 0.94
(NN)
Gradient Boosting 1.35 1.74 0.96
(GBM)

Random Forest (RF) 1.55 2.10 0.92
Linear Regression 2.89 3.55 0.78

The achieved value of 0.97 for XGBoost indicates that
the model successfully explains 97% of the variance
in the optimal price or demand signal, representing a
highly robust result for dynamic pricing systems. The

https://aimjournals.com/index.php/ijidml

low MAE of 1.29 further signifies that the average
error in price prediction is minimal, which is
associated with highly accurate pricing decisions.
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3.1.2 Model Stability and Robustness

While the Neural Network model showed competitive
performance, it required
computational resources and hyperparameter tuning
to reach the observed of 0.94. The tree-based models,
particularly XGBoost, demonstrated superior stability
and robustness when faced with dataset skewness
and the sparse nature of competitor data, a common
challenge in real-world e-commerce deployment. The
performance gap widened notably in high-volatility
scenarios, where XGBoost maintained a tighter error

significantly more

margin than the NN.

3.2 Impact of Sentiment Feature Integration

To isolate and quantify the value of incorporating
customer mood, a specific comparison was conducted
between the full Sentiment-Aware XGBoost model
and an identical Transactional-Only XGBoost model
that excluded the sentiment feature.

3.2.1 Comparison: Sentiment-Aware vs. Transactional-
Only Models

The quantifiable improvement associated with the sentiment feature was significant:

The inclusion of the sentiment feature was associated
with a improvement in the metric and an reduction in
MAE. This empirical evidence supports the finding
that sentiment-aware models outperformed those
using only transactional data, demonstrating that the
NLP pipeline successfully translated the nuanced,
qualitative input of customer reviews into a powerful
quantitative pricing signal.

3.2.2 Feature Importance Analysis

Analysis of the feature importance confirmed the
the
Unsurprisingly, Competitor price difference and the

critical role of engineered features.
estimated price elasticity of demand ranked highly.
However, the rolling average sentiment score ranked
as the third most influential non-price feature,
significantly ahead of many standard temporal
variables. This supports the notion that the sentiment
feature effectively captured emotional drivers of
purchasing behavior not reflected in numerical data,
providing the model with signals of shifts in consumer

attitude before they were fully reflected in sales

https://aimjournals.com/index.php/ijidml

Model Version MAE RMSE Improvement
in
SADP XGBoost 1.29 1.65 0.97
(Full)
Transactional- 1.40 1.83 0.94 N/A
Only XGBoost
volume.

3.3 Real-Time Deployment Simulation Benchmarks

For a dynamic pricing model to be commercially
viable, accuracy must be paired with low latency and
high scalability.

3.3.1 Latency and Throughput

A simulation of real-time pricing requests across
10,000 products confirmed the operational efficiency
of the top two models. Both XGBoost and Neural
Networks latency in
simulations. XGBoost, in particular, maintained an

showed low real-time
average prediction latency of under 50 milliseconds
per request, making it highly feasible for high-
frequency, low-latency API calls typical of live e-

commerce pricing engines.

3.3.2 Adaptability to Demand Surges

The simulation included a series of stress tests
simulating rapid, unpredicted demand surges (e.g.,
product going viral). The sentiment-aware XGBoost
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model demonstrated superior predictive adaptation
in these instances. Because the model received a rapid
influx of high-positive sentiment signals prior to the
maximum sales velocity, it was able to recommend a
price increase earlier and more accurately than the
transactional-only model. This confirms that the
models adapted well to demand surges, competitor
changes, promotions, supporting the
framework’s robust nature.

and

4. Discussion
4.1 Interpretation of XGBoost Superiority

The results overwhelmingly support the efficacy of
the proposed Sentiment-Aware Dynamic Pricing
(SADP) framework. The core finding is the clear
superiority of the XGBoost architecture in this
multimodal context, achieving a high of 0.97. This
high performance is associated with XGBoost's
capacity to efficiently handle highly dimensional, non-
linear, and often sparse structured data—the precise
characteristics of an e-commerce pricing dataset.
Unlike Neural Networks, require
extensive feature selection and engineering to
manage feature interactions, XGBoost natively
handles these relationships through its optimized,
second-order tree-based ensemble approach.

which often

The lift in associated with integrating sentiment data
is the most compelling result for e-commerce
strategy. It empirically supports that price, time, and
inventory may be insufficient predictors alone. The
model’s ability to use sentiment data to quantify the
intangible market mood allows it to move beyond
simple correlation and into a more nuanced
understanding of consumer willingness-to-pay. By
including the sentiment score as a dynamic feature,
the effectively
satisfaction into a quantifiable pricing signal.

framework translates market

4.2 Strategic Value of Sentiment in Dynamic Pricing

The integration of sentiment holds profound strategic
implications, positioning the SADP framework at the
intersection of revenue management and customer
experience management. Traditional DP is often
viewed as transactional and reactive. By contrast, a
sentiment-aware system is inherently preemptive. It
allows the pricing engine to recognize that high
customer satisfaction (high positive sentiment) is
associated with inelastic demand

an curve,

supporting a higher price point, while a wave of

https://aimjournals.com/index.php/ijidml

negative feedback (negative sentiment) predicts the
necessity of an immediate price correction or
promotional action to prevent customer churn or
reputational damage. This suggests that pricing
decisions can align not only with short-term revenue
goals but also with long-term brand equity.

The model’s low latency, confirmed by the real-time
simulation, ensures that this sentiment signal can be
acted upon immediately. This characteristic supports
the idea that the SADP framework is suitable for
integration into live e-commerce pricing engines,
where speed and accuracy are non-negotiable
requirements for competitive advantage,

4.3 Implications for E-Commerce Revenue

Management

The SADP framework offers a tangible path for e-
commerce platforms to operationalize data-driven
decision-making, offering several key advantages:

e Optimized Margins: By reducing the average
pricing error (MAE of 1.29), the model supports
setting prices closer to the true optimal point,
which is associated with maximizing revenue
per transaction.

e Reduced Markdown Risk: The system provides
an accurate prediction of future demand
volatility, allowing inventory managers to adjust
stocking and pricing schedules preemptively,
which may reduce the need for costly last-
minute markdowns.

e Competitive Agility: The rapid integration of
competitor data and sentiment ensures the
platform is simultaneously aware of external
pricing moves and internal product perception,
offering a dynamic edge in real-time market
bidding.

4.4 Limitations and Future Research

While the SADP framework achieves a high degree of
predictive accuracy, its implementation presents
for future academic

avenues and practical

exploration.

4.4.1 Data and Correlational Inference Limitations

The predictive nature of the current model, while
highly accurate, cannot definitively isolate the causal
impact of price changes in a live environment without
extensive A/B testing, which was outside the scope of
this study. The estimated price elasticity of demand is
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a powerful feature, but it remains an approximation.
Furthermore, real-time data on competitor inventory
levels remains challenging to acquire consistently
across all platforms, representing a practical data
limitation.

4.4.2 Model Scope and Prescriptive Optimization

The current framework focuses on price prediction
(forecasting the optimal price or demand). A natural
and necessary extension of this work is to integrate
the SADP prediction engine into a prescriptive model.
Future research should explore using the accurate
price/demand prediction from the XGBoost model as
a critical input for a Deep Reinforcement Learning
(DRL) agent,. This DRL agent would then be tasked
with learning the optimal sequence of pricing actions
over time, utilizing the XGBoost output as a reliable
representation of the environment's state, thereby
shifting from predicting what the price should be to
optimizing when and how much to change it. This
integration would require defining a complex reward
function that balances revenue gain with inventory
constraints and customer satisfaction penalties.

4.4.3 Generalizability and Ethical Considerations

The model's performance was validated on a general
e-commerce dataset. Future work should test its
generalizability across diverse retail verticals (e.g.,
fashion, perishable goods, digital subscriptions)
where demand dynamics are likely to differ
significantly. Finally, as with all ML-driven pricing
systems, a critical area for theoretical and practical
research involves the ethical implications of dynamic
pricing. The potential for the model to inadvertently
lead to algorithmic price discrimination based on
inferred user wealth or willingness to pay must be
actively mitigated and studied through the lens of
algorithmic fairness. This requires developing an
ethical constraint layer (e.g.,, a "fairness filter") that
monitors and prevents the DRL agent from making
overly aggressive or discriminatory pricing actions.

V. Conclusion

The digital economy demands speed, precision, and
nuance in pricing strategy. This research successfully
proposed and validated a Hybrid Sentiment-Aware
Dynamic Pricing (SADP) framework that sets a new
benchmark for predictive accuracy in e-commerce. By
integrating traditional market data with a novel,
dynamically calculated sentiment feature derived

https://aimjournals.com/index.php/ijidml

from multilingual customer reviews, the model
effectively captured signals of the emotional drivers
of demand, which is associated with a quantifiable
increase in predictive power. The comprehensive
comparative supported by
hyperparameter optimization and Time Series Cross-
Validation, definitively established the XGBoost
model as the most suitable architecture for this
complex, task, achieving superior
performance metrics, including an of This
framework’s high accuracy and low-latency profile
supports its designation as a platform fully suitable
for integration into live e-commerce pricing engines,
providing a robust, scalable, and sentiment-informed
foundation for next-generation revenue management.
While the current model excels at prediction, future
work will focus on integrating this predictive power
into a prescriptive Deep Reinforcement Learning
environment to fully realize the potential of
autonomous, ethical, and highly optimized pricing in
e-commerce.

analysis, rigorous

real-time
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