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ABSTRACT 

 

This study addresses the limitation of traditional dynamic pricing models in e-commerce by developing a novel, 

hybrid Sentiment-Aware Dynamic Pricing (SADP) framework that integrates real-time customer sentiment alongside 

core transactional and competitor features. A comprehensive, multimodal dataset, including multilingual customer 

reviews, was subjected to a robust preprocessing pipeline (including SMOTE for imbalance handling) and extensive 

feature engineering (e.g., competitor price difference, estimated price elasticity of demand). Multiple advanced 

machine learning models were trained and rigorously evaluated using a Bayesian Optimization strategy and Time 

Series Cross-Validation. The XGBoost model significantly outperformed all competitors, achieving superior metrics 

(R2: 0.97, MAE: 1.29, RMSE: 1.65). Crucially, the integration of sentiment features was associated with a 

quantifiable improvement in prediction accuracy compared to models using only numerical data, demonstrating the 

ability to capture emotional drivers of purchasing behavior. Both XGBoost and Neural Networks demonstrated low 

latency, confirming their suitability for real-time, scalable deployment in live e-commerce pricing engines. This 

research presents one of the first empirically validated dynamic pricing frameworks to successfully integrate 

sentiment analysis for enhanced predictive accuracy, offering a proven, scalable architecture for next-generation 

revenue management. 

Keywords: Dynamic Pricing, Machine Learning, XGBoost, Sentiment Analysis, E-Commerce, Real-Time Pricing, 

Revenue Management. 
 

I. Introduction 

1.1 Background and Evolution of Dynamic Pricing 

(DP) 

In the highly competitive landscape of modern digital 

commerce, the ability to rapidly adjust product prices 

in response to shifting market conditions is 

paramount to survival and profitability. This practice, 

known as Dynamic Pricing (DP), moves beyond static 

or seasonal adjustments to leverage real-time data for 

optimized revenue management,. Historically, pricing 

decisions were guided by simple cost-plus models or 

fixed rule-sets that proved inadequate for capturing 

the volatile nature of consumer demand and 

aggressive competitor actions in the digital realm. 

The evolution of e-commerce has necessitated a 

paradigm shift from these rudimentary methods to 

sophisticated, algorithmic approaches. Early dynamic 

pricing mechanisms in the online retail sector focused 

primarily on inventory levels and time-based 

discounts. However, the sheer volume of data 

generated by online transactions, competitor 

scraping, and user behavior has been associated with 

the pathway for the application of Machine Learning 

(ML) to transform DP from a reactive strategy into a 

proactive, predictive science,. Modern ML models 

allow retailers to simultaneously analyze hundreds of 

variables—including competitor prices, time-of-day 

effects, and historical sales velocity—to calculate an 

optimal price point for a specific product at a specific 
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moment in time. The core economic objective remains 

maximizing revenue and margin while preserving 

high customer satisfaction and maintaining market 

competitiveness, 

1.2 Review of ML Approaches in Dynamic Pricing 

The contemporary academic literature on DP is 

predominantly divided into two ML categories: 

predictive and prescriptive models. Predictive 

models focus on forecasting key variables, such as 

short-term demand, price elasticity, or the probability 

of a sale at a given price point. Algorithms like Linear 

Regression, Random Forests, and Gradient Boosting 

Machines (GBMs) are widely deployed for this task, 

leveraging structured data to estimate the outcome of 

a pricing action,. More advanced techniques, notably 

Deep Neural Networks (NNs), have also been adapted 

to capture highly non-linear relationships and 

interactions within complex feature spaces. 

A significant portion of recent research focuses on 

prescriptive models, which are designed to 

recommend the optimal price action rather than just 

predicting an outcome. Deep Reinforcement Learning 

(DRL) models, such as those employing Q-learning or 

policy gradient methods, have emerged as a state-of- 

the-art solution for this challenge,,. These agents treat 

pricing as a sequential decision-making process, 

learning the best pricing policy by interacting with a 

simulated or real-world environment to maximize 

cumulative reward (revenue). For instance, DRL has 

been applied effectively to autonomous resource 

management, demonstrating its capability in 

optimizing continuous actions over time, a principle 

highly relevant to pricing. While DRL presents 

significant promise for price optimization, accurate 

price prediction remains the fundamental building 

block—a less accurate prediction of demand or 

elasticity is associated with suboptimal subsequent 

prescriptive actions. This highlights the critical need 

for highly accurate predictive models that can serve 

as the reliable foundation for any prescriptive system. 

1.3 Identifying the Core Research Gap: The Sentiment 

Blind Spot 

Despite the sophisticated ML techniques now 

employed, a persistent limitation in most existing 

dynamic pricing frameworks is their reliance 

primarily on objective, numerical data. Models 

typically ingest features relating to price, inventory, 

traffic, and temporal patterns. While critical, this data 

only captures the outcome of purchasing behavior, 

often failing to account for the transient, emotional 

drivers that are associated with consumer readiness 

to purchase or willingness to pay. A sudden shift in 

public perception following a product review, a viral 

social media trend, or a change in post-purchase 

satisfaction is rarely reflected quickly or accurately in 

raw sales metrics alone. 

The research gap is thus twofold: 

1. Neglect of Emotional Context: Most models 

operate with a sentiment blind spot, failing to 

systematically integrate the qualitative, real- 

time pulse of customer mood derived from 

reviews, feedback, and social media. This 

omission means models may miss crucial signals 

that might indicate a sharp, unpredicted spike in 

demand (due to high satisfaction) or an 

unexpected drop (due to quality concerns), often 

resulting in suboptimal pricing decisions. 

2. Lack of Empirical Best Practice: There is a need 

for a rigorous, comparative study that not only 

integrates sentiment but also validates which 

modern ML architecture—specifically the 

powerful yet highly efficient tree-based methods 

like XGBoost—provides the most accurate, low- 

latency prediction engine suitable for live, real- 

time e-commerce deployment, particularly 

when facing complex, multimodal data. 

This study directly addresses these gaps by proposing 

and validating a novel, Sentiment-Aware Dynamic 

Pricing (SADP) framework that elevates customer 

feedback to a core feature, moving beyond simple 

numerical correlations to harness emotional context. 

1.4 Research Objectives and Core Contributions 

The primary objective of this research is to develop, 

implement, and rigorously evaluate a hybrid, 

Sentiment-Aware Dynamic Pricing (SADP) 

framework leveraging advanced machine learning to 

achieve state-of-the-art price prediction accuracy for 

real-time e-commerce deployment. 

The specific contributions of this work are: 

1. A Novel SADP Framework: Designing and testing 

a system for the robust integration of 

multilingual customer sentiment data into a 

comprehensive  ML  feature  set,  providing 
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empirical evidence that sentiment is associated 

with enhanced predictive accuracy. 

2. Performance Validation and Model Selection: 

Conducting a thorough comparative 

performance analysis that demonstrates the 

superior accuracy of the XGBoost model (: 0.97, 

MAE: 1.29, RMSE: 1.65) over Neural Networks 

and other established baselines for this 

multimodal, high-dimensional problem. 

3. Comprehensive Feature Engineering: Detailing a 

reproducible strategy for robust feature 

engineering, including the creation of dynamic, 

predictive features like the estimated price 

elasticity of demand and nuanced competitor 

price differences. 

4. Real-Time Deployment Blueprint: Validating the 

resulting model's low latency and scalability in 

simulation, supporting its immediate viability 

for integration into live e-commerce pricing 

engines. 

II. Methodology 

The successful implementation of a sentiment-aware 

dynamic pricing model rests on a meticulous, multi- 

stage methodology encompassing multimodal data 

integration, a robust preprocessing pipeline, and 

rigorous comparative modeling. 

2.1 Data Sourcing and Integration 

The foundation of the SADP framework is a rich, 

multimodal dataset collected from a prominent e- 

commerce platform over an 18-month period. This 

dataset is structured around the product-time-slot 

unit of analysis and comprises three primary streams: 

1. Transactional and Inventory Data: Records of 

historical sales volume, final transaction price, 

original listing price, inventory levels, and 

product category information. 

2. Competitor Intelligence Data: Time-stamped 

data scraped from primary competitor websites, 

detailing their selling prices, promotional flags, 

and estimated stock levels. This allows for the 

calculation of the Competitor price difference, a 

crucial feature. 

3. Customer Feedback Data: A vast corpus of 

multilingual customer reviews and product 

ratings. This data stream is critical for 

generating the sentiment feature. The decision 

to incorporate multilingual reviews was made to 

ensure the model’s generalizability to the global 

scale of e-commerce operations, where user 

feedback originates from diverse linguistic 

backgrounds. 

2.2 Robust Preprocessing Pipeline 

Achieving the high predictive accuracy required for 

real-time deployment necessitates a comprehensive 

and robust preprocessing pipeline to ensure data 

quality and model readiness. 

2.2.1 Handling Missing Values, Outliers, and Duplicates 

Missing values, particularly in competitor stock levels 

or certain time-dependent metrics, were handled 

using both simple imputation (mode/median for 

static attributes) and more advanced techniques like 

Multiple Imputation by Chained Equations (MICE) for 

dependent time-series variables. Outliers, identified 

in sales velocity and price distribution (e.g., 

promotional price errors), were addressed using 

Interquartile Range (IQR)-based capping to mitigate 

their disproportionate influence on model training 

without discarding valuable extreme event data. 

Duplicate entries resulting from data logging errors 

were systematically identified and removed. 

2.2.2 Addressing Imbalance and Skewness 

In a typical e-commerce setting, extreme demand 

events—such as viral product interest or aggressive 

competitive price drops—are rare but highly 

consequential. This often leads to a class imbalance 

problem where the model is over-trained on average 

behavior and underprepared for critical high- 

volatility situations. To counter this, techniques like 

SMOTE (Synthetic Minority Over-sampling 

Technique) were applied to the minority classes (e.g., 

extreme price change events or high-demand 

periods). This ensured that the model could learn the 

complex decision boundaries associated with these 

commercially significant, yet infrequent, scenarios. 

2.2.3 Data Encoding and Scaling 

Categorical features, such as product category and 

brand, were primarily encoded using Target 

Encoding, which leverages the relationship between 

the category and the target variable (price/demand) 

to reduce dimensionality while preserving predictive 

power. Numerical features were standardized (Z- 

score normalization) to ensure all inputs contributed 

equally to the learning process, particularly for 

distance-based models like Neural Networks. 
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2.3 Comprehensive Feature Engineering 

The success of a predictive pricing model is directly 

proportional to the quality of its features. This study’s 

methodology emphasizes the creation of 

sophisticated, predictive features that capture 

economic theory, market context, and consumer 

sentiment. 

2.3.1 Economic and Competitor Features 

Beyond raw price and volume, several features rooted 

in economic principles were engineered: 

● Estimated Price Elasticity of Demand (PED): This 

critical feature was approximated by calculating 

the local elasticity at the product-time level using 

rolling windows of past price changes and 

corresponding demand shifts. This provides a 

dynamic, real-time indication of consumer price 

sensitivity, a core input for pricing decisions. 

● Competitor Price Difference: Calculated as the 

difference between the focal product's price and 

the average price of its top three direct 

competitors. Normalizing this value provided a 

clear metric of market position. 

● Financial and Discount Features: Features 

detailing Revenue per unit and the Discount 

percentage currently applied were included to 

help the model learn the complex relationship 

between promotional depth and sales volume. 

2.3.2 Temporal and Contextual Features 

To capture time-based demand effects, a range of 

temporal features (hour of day, day of week, day of 

month, week of year) were extracted. Furthermore, 

promotional flags were created to explicitly signal 

known events such as Black Friday, seasonal sales, or 

limited-time offers, enabling the model to account for 

these predictable demand anomalies. 

2.3.3 Sentiment Feature Generation (The Core Novelty) 

The sentiment feature integration is a key 

methodological contribution. The customer reviews 

corpus underwent a dedicated Natural Language 

Processing (NLP) pipeline: 

1. Text Preprocessing and Multilingual Analysis: 

Reviews were cleaned (stop-word removal, 

stemming/lemmatization). A dedicated 

multilingual transformer model was employed 

to process text in various languages 

simultaneously, ensuring all user feedback was 

captured, 

2. Sentiment Scoring: Each review was assigned a 

numerical sentiment score (ranging from highly 

negative to highly positive) based on its 

emotional tone. 

3. Aggregation and Integration: The individual 

review scores were then aggregated at the 

product-time-slot level—a critical step. We 

calculated a rolling average sentiment score for 

the last seven days for each product. This rolling 

score served as the sentiment feature input for 

the final pricing model, providing a dynamic, 

numerical representation of current customer 

satisfaction and market mood, capable of 

capturing emotional drivers. 

2.4 Modeling Framework and Selection 

The selection of the appropriate modeling framework 

is paramount to generating accurate, real-time price 

predictions from our multimodal, high-dimensional 

dataset. We systematically evaluated five distinct 

models, categorized into baseline methods, advanced 

gradient boosting, and deep learning, to establish a 

robust comparative benchmark. The goal was not 

merely to identify a top performer, but to understand 

why a particular architecture excelled in capturing 

the non-linear, interacting effects of transactional, 

sentiment, and competitor features. 

2.4.1 Baseline Models and Preliminary Analysis 

The comparative analysis began with two 

foundational models to establish the floor for 

predictive performance: Linear Regression and 

Random Forest. 

A. Linear Regression (LR): This served as the primary 

benchmark to assess the degree of linear separability 

within the feature space. The LR model, attempting to 

fit a relationship of the form: 

where is the predicted optimal price, are the input 

features (including our engineered sentiment, 

elasticity, and competitor features), and are the 

learned coefficients. As expected, LR demonstrated 

the weakest performance, achieving an of only in the 

preliminary analysis. This poor fit conclusively 

indicated that the relationship between pricing 

features and demand is overwhelmingly non-linear 

and driven by complex interactions that are often not 

captured by simple additive terms. 
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B. Random Forest (RF): The RF model, a fundamental 

ensemble learning technique, was introduced as a 

non-linear baseline. RF builds a multitude of decision 

trees during training and outputs the mean prediction 

(for regression tasks) of the individual trees. This 

approach inherently manages non-linearity and 

feature interaction through recursive partitioning of 

the feature space. The use of bagging (bootstrap 

aggregating) to train each tree on a different subset of 

the training data, combined with random feature 

selection at each split, provides robustness against 

overfitting. While demonstrating a marked 

improvement over LR with an of , RF's inherently 

parallel structure and averaging mechanism often 

lead to an inability to fully correct the errors of 

preceding trees, limiting its ultimate predictive power 

compared to sequential ensemble methods. 

2.4.2 The XGBoost Architecture for Pricing Prediction 

The Extreme Gradient Boosting (XGBoost) 

framework was chosen as the principal advanced 

model due to its demonstrated scalability, 

computational efficiency, and superior performance 

in structured data prediction competitions. XGBoost 

is an optimized distributed gradient boosting library 

designed to be highly flexible and portable. It operates 

under the principle of sequential ensemble learning, 

where new models are iteratively added to correct the 

residual errors made by previously trained models,. 

A. Mechanics of Gradient Boosting: At its core, 

XGBoost minimizes a specified objective function, 

which is a combination of a loss function (measuring 

the difference between the prediction and the target, 

) and a regularization term () that controls the 

complexity of the model: 

The key optimization is that, instead of optimizing the 

loss function directly, XGBoost uses the second-order 

Taylor expansion of the loss function. This allows for 

the incorporation of both the first-order gradient 

statistics (the residual errors) and the second-order 

statistics (the curvature of the loss function, or the 

Hessian), providing a faster convergence path and 

better handling of non-convex loss surfaces. 

The objective function at step can be approximated 

as: 

where and are the first and second derivatives of the 

loss function with respect to the prediction, and is the 

tree being added at step . This sophisticated 

optimization allows XGBoost to be extremely precise 

in minimizing prediction errors. 

B. The Regularization Term (): The complexity of the 

model is controlled through a dedicated 

regularization component, which penalizes the 

number of leaves () and the magnitude of the scores 

() in the new tree : 

The hyperparameters (minimum loss reduction 

required to make a further partition on a leaf node of 

the tree) and (L2 regularization term) are essential 

for preventing the model from overfitting to the noise 

in the transactional and sentiment data. This inherent 

control mechanism, coupled with the precision of the 

second-order optimization, is the fundamental reason 

XGBoost achieved superior stability and predictive 

accuracy compared to other models in this study, 

2.4.3 Comprehensive Hyperparameter Optimization 

Strategy 

Achieving the benchmark of with the XGBoost model 

required a meticulous and systematic approach to 

hyperparameter tuning. Given the complexity and 

number of interacting parameters, we employed a 

Bayesian Optimization strategy, which is more 

efficient than traditional Grid Search as it models the 

objective function (in our case, the minimized RMSE 

on the validation set) to guide the search towards 

promising areas of the parameter space. 

A. Hyperparameters and Tuning Ranges: The optimization focused on key parameters governing the 

structure, regularization, and stability of the boosting process: 

 

Parameter Role Optimization 

Range/Value 

Significance for 

SADP Framework 

objective Defines the loss reg:squarederror Standard for price 
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function to be 

minimized. 

 
prediction 

(regression); 

minimized RMSE. 

eval_metric Metric used for 

monitoring training 

progress and early 

stopping. 

rmse Directly relates to 

the dollar error, 

crucial for 

commercial viability. 

n_estimators The total number of 

boosting rounds 

(trees). 

(with early 

stopping) 

High number allows 

full error correction; 

early stopping 

prevents overfitting. 

max_depth Maximum depth of a 

tree. 

 

Controls model 

complexity; tuned to 

5 for optimal 

balance. 

learning_rate () Step size shrinkage 

used in updating 

weights. 

 

Critical for stability; 

low values () help 

prevent jumping 

over local optima. 

gamma () Minimum loss 

reduction required 

for a split (tree 

complexity). 

 

Controlled tree 

pruning; important 

for handling noisy 

sentiment data. 

lambda () (L2 Reg.) L2 regularization 

term on weights. 

 

Essential for robust 

generalization on 

sparse feature 

subsets. 

subsample Ratio of training 

data randomly 

sampled for building 

trees. 

 

Used to combat 

overfitting; 

optimized to 0.75. 

colsample_bytree Ratio of features 

randomly sampled 

for building trees. 

 

Ensures diversity 

across trees, 

mitigating 

collinearity between 

engineered features. 
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B. Optimal Parameter Configuration: The final, 

optimized configuration that was associated with 

MAE: 1.29 and RMSE: 1.65 employed a low learning 

rate () combined with a high number of estimators 

(1,500 effective rounds) and moderate regularization 

(). This configuration represents a highly cautious and 

stable boosting process, prioritizing small, 

incremental improvements over aggressive error 

correction, which is necessary when dealing with 

noisy, real-time input features like the aggregated 

sentiment scores. The low helps guarantee that the 

model learns the highly complex, non-linear feature 

interactions, such as how the impact of a discount 

percentage is mediated by both the competitor price 

difference and the current customer sentiment level. 

C. Cross-Validation Strategy (Time Series Split): Given 

the inherent temporal nature of dynamic pricing data, 

a simple K-Fold cross-validation would introduce 

look-ahead bias, where the model trains on future 

data to predict the past. To maintain the integrity of 

the time-series forecasting problem, we employed a 

Time Series Cross-Validation (TSCV) strategy. This 

method ensures that the validation set always follows 

the training set chronologically, simulating the real- 

world deployment scenario where the model must 

learn from historical data to predict future prices. The 

training window was kept constant (e.g., 12 months), 

and the validation window was a rolling window (e.g., 

1 month), strictly preserving causality. 

2.4.4 Comparative Deep Learning Architecture 

To provide a rigorous benchmark against the state-of- 

the-art in machine learning, we implemented a 

dedicated Deep Neural Network (NN) architecture. 

While tree-based methods often excel at tabular data, 

NNs are theoretically capable of discovering more 

abstract, latent feature representations, particularly 

beneficial for integrating high-dimensional inputs like 

the sentiment feature (which is the output of an 

internal NLP model). 

A. Network Topology and Layer Specification: The 

selected architecture was a Multi-Layer Perceptron 

(MLP), designed with five dense layers to balance 

complexity with training time: 

● Input Layer: 128 neurons, corresponding to the 

total number of engineered features (including 

the one-hot encoded categorical features and the 

numerical sentiment score). 

● Hidden Layer 1: 64 neurons, activated by the 

Rectified Linear Unit (ReLU) function. 

● Hidden Layer 2: 32 neurons, activated by ReLU. 

● Hidden Layer 3: 16 neurons, activated by ReLU. 

● Output Layer: 1 neuron (representing the 

predicted optimal price), activated by a linear 

function, appropriate for a regression task. 

B. Regularization and Dropout: To combat overfitting, 

which is a common challenge with deep networks on 

structured data, L2 kernel regularization was applied 

to all hidden layers. Furthermore, Dropout (rate of ) 

was implemented after the first two hidden layers, 

randomly deactivating a fraction of neurons during 

training to prevent co-adaptation and force the 

network to learn more robust feature 

representations. 

C. Optimization and Learning Rate Policy: The 

network was trained using the Adam optimizer due to 

its adaptive learning rate capabilities, which are 

beneficial for fast convergence. A dynamic learning 

rate policy was implemented, starting with an initial 

rate of and employing a ReduceLROnPlateau callback. 

This strategy, inspired by methods proven effective in 

stabilizing deep neural network training, 

automatically reduces the learning rate when the 

validation loss stops improving, ensuring the network 

continues to search for optimal weights without 

overshooting the minimum. Despite this meticulous 

optimization, the NN ultimately yielded an of , falling 

short of the XGBoost performance, which supports 

the selection of the tree-based ensemble approach for 

the specific characteristics of our e-commerce data. 

2.4.5 Training Protocol and Stability Measures 

The final training protocol incorporated several 

measures to ensure the integrity, stability, and 

commercial viability of the models. 

A. Loss Function: For both the XGBoost and Neural 

Network regression tasks, the primary loss function 

used during training was the Mean Squared Error 

(MSE). The MSE is advantageous as it penalizes larger 

prediction errors quadratically (since ), aligning with 

the commercial objective of minimizing significant 

pricing mistakes which often incur the highest 

penalty in lost revenue or customer goodwill. 

B. Early Stopping: To prevent the models, particularly 



INTERNATIONAL JOURNAL OF INTELLIGENT DATA AND MACHINE 

LEARNING (IJIDML-3087-4262) 

pg. 8 https://aimjournals.com/index.php/ijidml 

 

 

 

the iterative XGBoost and the high-capacity NN, from 

overfitting to the training data noise, an Early 

Stopping mechanism was strictly enforced. Training 

was halted if the RMSE on a dedicated, unseen 

validation set did not improve for a defined number 

of epochs (patience = 50 for NN, 100 rounds for 

XGBoost). This ensures the model generalizes 

optimally to new market conditions. 

C. Computational Environment and Scalability: All 

models were trained and benchmarked within a 

distributed computing environment optimized for 

high-volume data processing. This setup validated 

that the selected architectures—specifically XGBoost, 

known for its distributed processing capabilities— 

are inherently scalable and capable of rapid re- 

training, a prerequisite for production deployment 

where models must be frequently updated to account 

for new data and evolving market dynamics. The 

validation  of  low-latency  performance  in  the 

subsequent results section (Section 3.3) directly 

stems from this efficient training and architectural 

selection. 

III. Results 

The analysis of the comparative model performance 

and the empirical validation of the sentiment feature 

integration confirms the potential of the proposed 

SADP framework. 

 

 
3.1 Comparative Model Performance Analysis 

The models were benchmarked on a validation 

dataset, with the results unequivocally establishing 

the superior performance of the Gradient Boosting 

approach. 

3.1.1 Overall Prediction Accuracy 

The primary comparison of all models revealed that XGBoost achieved the best performance across all key 

prediction metrics. The results confirm its suitability for accurately capturing the complex, non-linear 

dependencies inherent in e-commerce pricing data, 

 

Model MAE (Lower is 

Better) 

RMSE (Lower is 

Better) 

(Higher is Better) 

XGBoost 1.29 1.65 0.97 

Neural Network 

(NN) 

1.48 1.95 0.94 

Gradient Boosting 

(GBM) 

1.35 1.74 0.96 

Random Forest (RF) 1.55 2.10 0.92 

Linear Regression 2.89 3.55 0.78 

 
 

 

The achieved value of 0.97 for XGBoost indicates that 

the model successfully explains 97% of the variance 

in the optimal price or demand signal, representing a 

highly robust result for dynamic pricing systems. The 

low MAE of 1.29 further signifies that the average 

error in price prediction is minimal, which is 

associated with highly accurate pricing decisions. 
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3.1.2 Model Stability and Robustness 

While the Neural Network model showed competitive 

performance, it required significantly more 

computational resources and hyperparameter tuning 

to reach the observed of 0.94. The tree-based models, 

particularly XGBoost, demonstrated superior stability 

and robustness when faced with dataset skewness 

and the sparse nature of competitor data, a common 

challenge in real-world e-commerce deployment. The 

performance gap widened notably in high-volatility 

scenarios, where XGBoost maintained a tighter error 

margin than the NN. 
 

3.2 Impact of Sentiment Feature Integration 

To isolate and quantify the value of incorporating 

customer mood, a specific comparison was conducted 

between the full Sentiment-Aware XGBoost model 

and an identical Transactional-Only XGBoost model 

that excluded the sentiment feature. 

3.2.1 Comparison: Sentiment-Aware vs. Transactional- 

Only Models 

The quantifiable improvement associated with the sentiment feature was significant: 

 

Model Version MAE RMSE 
 

Improvement 

in 

SADP XGBoost 

(Full) 

1.29 1.65 0.97 
 

Transactional- 

Only XGBoost 

1.40 1.83 0.94 N/A 

 
 

 

 
The inclusion of the sentiment feature was associated 

with a improvement in the metric and an reduction in 

MAE. This empirical evidence supports the finding 

that sentiment-aware models outperformed those 

using only transactional data, demonstrating that the 

NLP pipeline successfully translated the nuanced, 

qualitative input of customer reviews into a powerful 

quantitative pricing signal. 

3.2.2 Feature Importance Analysis 

Analysis of the feature importance confirmed the 

critical role of the engineered features. 

Unsurprisingly, Competitor price difference and the 

estimated price elasticity of demand ranked highly. 

However, the rolling average sentiment score ranked 

as the third most influential non-price feature, 

significantly ahead of many standard temporal 

variables. This supports the notion that the sentiment 

feature effectively captured emotional drivers of 

purchasing behavior not reflected in numerical data, 

providing the model with signals of shifts in consumer 

attitude before they were fully reflected in sales 

volume. 
 

3.3 Real-Time Deployment Simulation Benchmarks 

For a dynamic pricing model to be commercially 

viable, accuracy must be paired with low latency and 

high scalability. 

3.3.1 Latency and Throughput 

A simulation of real-time pricing requests across 

10,000 products confirmed the operational efficiency 

of the top two models. Both XGBoost and Neural 

Networks showed low latency in real-time 

simulations. XGBoost, in particular, maintained an 

average prediction latency of under 50 milliseconds 

per request, making it highly feasible for high- 

frequency, low-latency API calls typical of live e- 

commerce pricing engines. 

3.3.2 Adaptability to Demand Surges 

The simulation included a series of stress tests 

simulating rapid, unpredicted demand surges (e.g., 

product going viral). The sentiment-aware XGBoost 
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model demonstrated superior predictive adaptation 

in these instances. Because the model received a rapid 

influx of high-positive sentiment signals prior to the 

maximum sales velocity, it was able to recommend a 

price increase earlier and more accurately than the 

transactional-only model. This confirms that the 

models adapted well to demand surges, competitor 

changes, and promotions, supporting the 

framework’s robust nature. 

4. Discussion 

4.1 Interpretation of XGBoost Superiority 

The results overwhelmingly support the efficacy of 

the proposed Sentiment-Aware Dynamic Pricing 

(SADP) framework. The core finding is the clear 

superiority of the XGBoost architecture in this 

multimodal context, achieving a high of 0.97. This 

high performance is associated with XGBoost’s 

capacity to efficiently handle highly dimensional, non- 

linear, and often sparse structured data—the precise 

characteristics of an e-commerce pricing dataset. 

Unlike Neural Networks, which often require 

extensive feature selection and engineering to 

manage feature interactions, XGBoost natively 

handles these relationships through its optimized, 

second-order tree-based ensemble approach. 

The lift in associated with integrating sentiment data 

is the most compelling result for e-commerce 

strategy. It empirically supports that price, time, and 

inventory may be insufficient predictors alone. The 

model’s ability to use sentiment data to quantify the 

intangible market mood allows it to move beyond 

simple correlation and into a more nuanced 

understanding of consumer willingness-to-pay. By 

including the sentiment score as a dynamic feature, 

the framework effectively translates market 

satisfaction into a quantifiable pricing signal. 

4.2 Strategic Value of Sentiment in Dynamic Pricing 

The integration of sentiment holds profound strategic 

implications, positioning the SADP framework at the 

intersection of revenue management and customer 

experience management. Traditional DP is often 

viewed as transactional and reactive. By contrast, a 

sentiment-aware system is inherently preemptive. It 

allows the pricing engine to recognize that high 

customer satisfaction (high positive sentiment) is 

associated with an inelastic demand curve, 

supporting a higher price point, while a wave of 

negative feedback (negative sentiment) predicts the 

necessity of an immediate price correction or 

promotional action to prevent customer churn or 

reputational damage. This suggests that pricing 

decisions can align not only with short-term revenue 

goals but also with long-term brand equity. 

The model’s low latency, confirmed by the real-time 

simulation, ensures that this sentiment signal can be 

acted upon immediately. This characteristic supports 

the idea that the SADP framework is suitable for 

integration into live e-commerce pricing engines, 

where speed and accuracy are non-negotiable 

requirements for competitive advantage, 

4.3 Implications for E-Commerce Revenue 

Management 

The SADP framework offers a tangible path for e- 

commerce platforms to operationalize data-driven 

decision-making, offering several key advantages: 

● Optimized Margins: By reducing the average 

pricing error (MAE of 1.29), the model supports 

setting prices closer to the true optimal point, 

which is associated with maximizing revenue 

per transaction. 

● Reduced Markdown Risk: The system provides 

an accurate prediction of future demand 

volatility, allowing inventory managers to adjust 

stocking and pricing schedules preemptively, 

which may reduce the need for costly last- 

minute markdowns. 

● Competitive Agility: The rapid integration of 

competitor data and sentiment ensures the 

platform is simultaneously aware of external 

pricing moves and internal product perception, 

offering a dynamic edge in real-time market 

bidding. 

4.4 Limitations and Future Research 

While the SADP framework achieves a high degree of 

predictive accuracy, its implementation presents 

avenues for future academic and practical 

exploration. 

4.4.1 Data and Correlational Inference Limitations 

The predictive nature of the current model, while 

highly accurate, cannot definitively isolate the causal 

impact of price changes in a live environment without 

extensive A/B testing, which was outside the scope of 

this study. The estimated price elasticity of demand is 
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a powerful feature, but it remains an approximation. 

Furthermore, real-time data on competitor inventory 

levels remains challenging to acquire consistently 

across all platforms, representing a practical data 

limitation. 

4.4.2 Model Scope and Prescriptive Optimization 

The current framework focuses on price prediction 

(forecasting the optimal price or demand). A natural 

and necessary extension of this work is to integrate 

the SADP prediction engine into a prescriptive model. 

Future research should explore using the accurate 

price/demand prediction from the XGBoost model as 

a critical input for a Deep Reinforcement Learning 

(DRL) agent,. This DRL agent would then be tasked 

with learning the optimal sequence of pricing actions 

over time, utilizing the XGBoost output as a reliable 

representation of the environment's state, thereby 

shifting from predicting what the price should be to 

optimizing when and how much to change it. This 

integration would require defining a complex reward 

function that balances revenue gain with inventory 

constraints and customer satisfaction penalties. 

4.4.3 Generalizability and Ethical Considerations 

The model's performance was validated on a general 

e-commerce dataset. Future work should test its 

generalizability across diverse retail verticals (e.g., 

fashion, perishable goods, digital subscriptions) 

where demand dynamics are likely to differ 

significantly. Finally, as with all ML-driven pricing 

systems, a critical area for theoretical and practical 

research involves the ethical implications of dynamic 

pricing. The potential for the model to inadvertently 

lead to algorithmic price discrimination based on 

inferred user wealth or willingness to pay must be 

actively mitigated and studied through the lens of 

algorithmic fairness. This requires developing an 

ethical constraint layer (e.g., a "fairness filter") that 

monitors and prevents the DRL agent from making 

overly aggressive or discriminatory pricing actions. 

V. Conclusion 

The digital economy demands speed, precision, and 

nuance in pricing strategy. This research successfully 

proposed and validated a Hybrid Sentiment-Aware 

Dynamic Pricing (SADP) framework that sets a new 

benchmark for predictive accuracy in e-commerce. By 

integrating traditional market data with a novel, 

dynamically calculated sentiment feature derived 

from multilingual customer reviews, the model 

effectively captured signals of the emotional drivers 

of demand, which is associated with a quantifiable 

increase in predictive power. The comprehensive 

comparative analysis, supported by rigorous 

hyperparameter optimization and Time Series Cross- 

Validation, definitively established the XGBoost 

model as the most suitable architecture for this 

complex, real-time task, achieving superior 

performance metrics, including an of . This 

framework’s high accuracy and low-latency profile 

supports its designation as a platform fully suitable 

for integration into live e-commerce pricing engines, 

providing a robust, scalable, and sentiment-informed 

foundation for next-generation revenue management. 

While the current model excels at prediction, future 

work will focus on integrating this predictive power 

into a prescriptive Deep Reinforcement Learning 

environment to fully realize the potential of 

autonomous, ethical, and highly optimized pricing in 

e-commerce. 
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