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ABSTRACT 

 

Purpose: This study investigates the utilization of high-frequency trade (HFT) data, combined with advanced machine 

learning (ML) techniques, to infer and analyze dynamic financial networks for the purpose of systemic risk 

assessment. Traditional network models often fail to capture the rapid, non-linear dependencies that propagate 

systemic risk, particularly under volatile conditions. 

Methodology: We develop a novel framework that leverages HFT data from firms to construct a rich feature space, 

including realized volatility and granular market microstructure proxies such as order-book imbalance. A Random 

Forest (RF) model is employed to learn the non-linear relationship between firm-specific features and future systemic 

risk contribution, with the resultant feature importance scores defining the dynamic, directed network edges. An 

Explainable AI (XAI) framework, using SHAP values, is implemented to address the "black box" nature of the RF 

and provide attributable risk contributions. 

Results: Our ML-driven network consistently reveals dynamic dependencies that are obscured in lower-frequency 

analyses. We find that the inclusion of order-book imbalance metrics enhances the prediction accuracy (AUC) of 

systemic risk events by an average of compared to models relying solely on realized volatility. The XAI analysis 

reveals that the marginal impact of microstructure shocks on systemic risk is non-linear and becomes exponentially 

greater during periods of high market volatility. 

Conclusion: The integration of HFT data and ML offers a powerful lens into the architecture of systemic risk. 

However, while offering superior insight and explainability, the study concludes that current network models still 

face significant challenges in capturing all complex, non-linear dimensions of contagion, especially during extreme, 

unprecedented market stress. Further research into multilayer networks and alternative ML architectures is warranted. 

 

Keywords: Financial Networks, High-Frequency Data (HFT), Systemic Risk, Market Microstructure, Machine 

Learning (Random Forest), Realized Volatility, Order Book Imbalance 

 

1.0 Introduction 

1.1 Background and Motivation 

The modern global financial system is 

characterized by an unprecedented level of 

interconnectedness and complexity. This tight 

coupling of institutions and markets, while 

fostering efficiency, simultaneously magnifies the 

potential for contagion and systemic risk. 

Systemic risk is no longer merely the risk of a 

single large institution failing; rather, it is the risk 

that distress in one part of the system spills over, 

triggering a cascading chain of failures that 

threatens the stability of the entire financial 

structure. The crises of the past—from the Russian 

default of 1998 to the 2008 Global Financial Crisis 

—have underscored the urgent necessity for 

reliable and timely methods to measure and 

monitor these hidden network dependencies. 
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Traditionally, measures of systemic risk relied on 

macro-economic indicators or relatively low-

frequency data, such as daily or monthly returns 

and balance sheet information. However, the rise 

of algorithmic trading and massive volumes of 

market transactions has shifted the underlying 

reality: market dynamics now unfold at the speed 

of light, driven by a dense ecology of interactions 

known as market microstructure. This 

microstructure—the process and outcomes of 

exchanging assets, visible through the flow of limit 

orders, trade executions, and quotes—is the true 

engine of short-term price discovery and risk 

propagation. Lower-frequency models inevitably 

suffer from aggregation bias, obscuring the rapid, 

transient, and non-linear dependencies that 

constitute genuine systemic risk channels. The 

primary motivation of this study is rooted in the 

conviction that the most accurate signals of 

financial interconnectedness and impending 

systemic stress reside within the high-granularity 

data of the market microstructure. Failure to 

utilize this information limits the efficacy of both 

prediction and policy intervention. 

1.2 Financial Network Modeling: A Review 

The study of financial interconnectedness has 

evolved significantly. Early methods focused 

primarily on simple pairwise correlation matrices 

derived from asset returns. These were later 

refined by techniques such as Granger causality, 

which attempted to establish the direction of 

information flow between firms. The pioneering 

work by Diebold and Yilmaz introduced the 

powerful concept of variance decompositions to 

quantify "connectedness," shifting the focus from 

simple correlation to spillover effects. Building on 

this, models like CoVaR and CoVaR provided a 

measure of a firm’s contribution to the system's 

risk during distress. More sophisticated 

techniques, such as Tail-Event Driven Networks 

(TENET), explicitly focus on the network structure 

during the extreme tail of the distribution, 

providing a more relevant measure of risk 

contagion. 

A critical advancement involves the use of realized 

measures derived from high-frequency trade 

(HFT) data, such as Realized Volatility and Realized 

Covariance. By using the sum of squared intra-day 

returns, these measures provide robust, model-

free estimates of true asset volatility, offering a 

substantial improvement over model-based 

estimates. Brownlees et al. formalized this 

approach by introducing "realized networks," 

where network edges are inferred directly from 

realized covariance measures. This represents a 

significant step forward, moving from return-

based networks to volatility-based networks. 

Despite these advancements, a gap persists: most 

established network models, even those using 

realized measures, fail to fully exploit the richest 

informational layer—the actual order book and 

trade flow dynamics. As highlighted by Easley et 

al., discerning information from raw trade data, 

beyond simple returns, is crucial. This research 

strongly emphasizes how the high granularity of 

trade data (market microstructure) reveals 

network connections and systemic risk 

contributions that are associated with, and often 

obscured in, lower-frequency models. The 

massive volume and complex non-linear nature of 

HFT data, however, necessitates a new 

methodological approach, specifically one capable 

of handling ultra-high dimensionality and non-

linearity—namely, machine learning. 

1.3 Objectives and Contribution 

The primary objective of this study is to develop 

and rigorously evaluate a machine learning 

framework for dynamically inferring financial 

interconnectedness using features derived from 

high-frequency trade and quote data. This 

approach aims to move beyond linear modeling 

assumptions and capture the non-linear 

relationship of risk spillovers in financial markets. 

The key contributions of this paper are: 

Feature Engineering: Constructing a novel, 

microstructural-rich feature set that 

systematically integrates realized measures with 
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order-book dynamics (e.g., liquidity and 

imbalance measures) to predict forward-looking 

systemic risk contributions. 

Machine Learning Inference: Applying the 

Random Forest (RF) algorithm to the high-

dimensional HFT feature set to non-linearly model 

and infer the directed edges of the financial 

network, using feature importance as a proxy for 

the strength of financial connection. 

Model Interpretability: Implementing an 

Explainable AI (XAI) framework to decompose the 

RF's non-linear predictions, providing attributable 

risk contributions that confirm the non-linear, 

conditional impact of microstructure features on 

systemic risk. 

Performance and Policy Evaluation: Providing a 

robust comparison demonstrating the superior 

predictive power of the HFT-driven ML network in 

identifying future systemic distress, compared to 

traditional linear and realized volatility-based 

benchmarks. 

2.0 Methodology 

2.1 Data Collection and Preprocessing 

2.1.1 Data Source and Scope 

The data for this study is drawn from two primary 

sources: the NYSE Trade and Quote (TAQ) 

Database and the Center for Research in Security 

Prices (CRSP) . The TAQ database provides 

transaction-level data, including time-stamped 

trades and the best bid and ask quotes for US-

listed equities, captured at millisecond precision. 

The CRSP data is utilized to obtain accurate daily 

returns and corporate structure information (e.g., 

NAICS codes ) for filtering and classification. We 

focus on a panel of large financial institutions, 

defined by their industry classification, over a 

continuous period of trading days. 

2.1.2 High-Frequency Feature Construction 

For each firm and day, we first construct standard 

realized volatility measures. The 5-minute mid-

quote returns are calculated, and the daily 

Realized Volatility () is estimated as the sum of 

squared 5-minute returns during regular trading 

hours. Similarly, the daily Realized Covariance () 

and Realized Correlation () between firms and are 

calculated using the product of their 5-minute 

returns. These form the baseline set of realized 

features. 

2.1.3 Microstructure-Informed Features 

To capture the informational content of market 

microstructure, we derive features directly from 

the raw quote data, specifically focusing on the 

pressure imbalance within the limit order book. 

Order-Book Imbalance (OBI): This measure is 

critical as it quantifies the relative pressure of 

buyers versus sellers at the best price levels. It is 

typically defined as: We aggregate the OBI over 

intra-day intervals (e.g., 5-minute) to create 

realized measures of imbalance, such as the mean 

and standard deviation of OBI (MOBIi,t, SOBIi,t). 

These metrics reflect transient price movements 

and liquidity dynamics, providing crucial, high-

frequency insight into informed trading. 

Liquidity Proxies: Following Chordia et al., we also 

include various high-frequency proxies for 

illiquidity, such as the daily average of the bid-ask 

spread and the adverse selection component, as 

these are often associated with information 

asymmetry and risk. 

In total, for each firm on day, we construct a high-

dimensional feature vector comprising lagged 

realized volatility, lagged realized correlation to 

other firms, and various market microstructure-

informed features (e.g.) 

2.2 Network Inference Framework 

2.2.1 Target Variable Definition (Systemic Risk 

Proxy) 

Inferring the dynamic financial network requires a 

reliable measure of future systemic risk 

contribution. We define the target variable, , as an 

indicator of whether firm will be in distress (e.g., 

fall below a critical value of capital or experience 

extreme negative returns, similar to the approach 

in and ) in a future period(e.g., days). The network 
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edges are then defined by the influence of firm 's 

current features () on firm 's future risk (). 

2.2.2 The Necessity of Machine Learning 

The connection between market microstructure 

and risk spillovers is inherently non-linear and 

complex. For instance, the impact of a large 

imbalance (a microstructure feature) on a 

subsequent volatility jump may be non-

monotonic and highly conditional on other 

factors, such as overall market liquidity. 

Traditional linear models, such as vector 

autoregressions (VAR), struggle to capture these 

intricate, high-dimensional interactions and are 

particularly poor at predicting rare, non-average 

events (the "tail" risk). 

This section justifies the necessity of employing 

machine learning techniques, specifically Random 

Forests, to effectively process the massive volume 

and complexity of HFT data for network inference. 

Machine learning, particularly non-parametric 

methods, allows for the discovery of complex 

relationships without restrictive a priori linearity 

assumptions . Given the high dimensionality of our 

feature space and the need to capture complex 

interactions, an ML approach is indispensable. 

 

2.2.3 Random Forest for Feature Selection and 

Edge Weighting 

We employ the Random Forest (RF) algorithm to 

model the relationship. The RF is an ensemble 

learning method that constructs a multitude of 

decision trees and outputs the class that is the 

mode of the classes (for classification) or the mean 

prediction (for regression) of the individual trees. 

Its advantages include robustness to overfitting, 

computational efficiency with large datasets, and 

the ability to measure Feature Importance. 

For each predicted firm, we train an RF classifier. 

The directed network edge weight from firm to 

firm, denoted, is defined by the importance of 

firm 's feature set in predicting the systemic risk of 

firm. Specifically, we utilize the permutation 

importance measure, which quantifies the 

decrease in predictive accuracy when the values 

of are randomly permuted. This measure: 

Provides a non-linear, robust measure of 

influence. 

Is naturally directed: the importance of in 

predicting does not necessarily equal the 

importance of in predicting. 

Allows for dynamic updating of the network on a 

daily or weekly basis. 

2.4 Interpretability Analysis and Non-Linear 

Feature Contribution 

While the Random Forest (RF) model offers 

substantial advantages in handling the high-

dimensionality and non-linearity of high-

frequency data , its complexity inherently 

positions it as a "black box" model . For 

applications in financial stability, particularly 

those intended for regulatory oversight, the lack 

of transparency in how a prediction is derived—

the so-called "explainability" problem—

represents a significant barrier to adoption. 

Regulators require not just an accurate prediction 

of systemic risk, but also a clear, attributable 

reason for why a specific firm is designated as an 

emerging Systemically Important Institution (SII) 

on a given day. To address this crucial limitation 

and provide a granular understanding of the non-

linear risk transmission channels identified by the 

RF, we incorporate an advanced model-agnostic 

interpretability framework. 

2.4.1 The Need for Explainable Financial Network 

Models 

Traditional linear models, such as those based on 

Vector Autoregressions (VAR) or even simple 

Realized Covariance, are intrinsically transparent: 

the coefficient magnitude directly indicates the 

direction and strength of influence. In contrast, 

the RF model’s output—the network edge weight 

based on feature importance—is a global measure 

that does not explain the conditional impact of 

features, nor does it detail which specific 
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microstructural features are driving risk for an 

individual institution on a particular day. 

To overcome this, we require a method that can 

decompose the RF output into contributions from 

individual input features. This capability serves 

two primary purposes: first, it validates the 

model’s use of market microstructure data by 

confirming their economic intuition; second, it 

provides regulatory decision-makers with local 

explanations for every prediction, thereby 

transforming the abstract network edge weight 

into a precise, attributable risk metric. 

2.4.2 SHAP (SHapley Additive exPlanations) 

Methodology 

 

We adopt the SHAP (SHapley Additive 

exPlanations) framework, a methodology rooted 

in cooperative game theory . SHAP values assign 

to each feature an importance value for a 

particular prediction. This value represents the 

feature's contribution to the difference between 

the actual prediction and the average prediction 

(the baseline expectation). SHAP is an ideal choice 

because it satisfies several desirable properties, 

including efficiency, symmetry, and the dummy 

feature property, guaranteeing a fair and 

mathematically sound attribution of importance. 

The SHAP value ϕk for feature k is calculated by: 

Where is the set of all features, is a subset of 

features excluding feature, and is the model 

prediction using only the features in the set. 

In the context of our network, we calculate SHAP 

values for every feature (where is the source firm 

and is the specific feature like or) used to predict 

the systemic risk of the target firm. The sum of the 

SHAP values attributed to all features originating 

from firm provides the local, directional influence 

of firm on firm 's risk for that specific day. This 

refinement of the edge weight allows us to 

understand not just that influences, but how 

much and through which microstructural channel 

(, , etc.). 

2.4.3 Local Interpretability: Decomposing 

Individual Risk Predictions 

The most direct utility of SHAP lies in its ability to 

provide local explanations for the daily systemic 

risk prediction of each firm. When the RF model 

identifies firm as being at high risk of distress (i.e., 

is predicted to be 1), the SHAP decomposition 

provides a clear, quantitative breakdown of the 

features that pushed the prediction toward risk. 

For instance, consider a scenario where the 

predicted risk is , against a baseline average risk of 

. The SHAP analysis might reveal: 

High positive contribution: A large, positive SHAP 

value is attributed to (Mean Order-Book 

Imbalance) originating from Institution, indicating 

that 's aggressive buying/selling pressure is 

strongly pushing 's predicted risk higher. 

Moderate negative contribution: A negative SHAP 

value is attributed to (Realized Volatility) of firm 

itself, indicating that low past volatility is 

mitigating the risk somewhat, but not enough to 

counteract the external pressure. 

By analyzing the SHAP decomposition daily, 

regulators gain an immediate, actionable 

understanding of the contagion path. If Institution 

is suddenly exerting strong influence via its 

features, it suggests an acute liquidity or 

informational shock originating from. This level of 

precision moves systemic risk analysis from a 

retrospective study to a real-time, diagnostic tool, 

fulfilling the demand for interpretability in high-

stakes financial applications. 

2.4.4 Global Interpretability: Non-Linear 

Interaction Effects 

Beyond local explanations, SHAP provides tools 

for global interpretability, which is essential for 

confirming economic theory and validating the 

necessity of using non-linear models. This allows 

us to visualize the conditional relationship 

between features and risk outcomes, which 

cannot be captured by simple correlation or linear 

Granger causality. 
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2.4.4.1 The Conditional Effect of Order-Book 

Imbalance () 

We focus the global interpretability analysis on 

the interaction effects involving the Order-Book 

Imbalance () features, which were identified as 

providing the predictive edge (Section 3.1). The 

standard feature importance only tells us that is 

important overall; SHAP interaction values allow 

us to understand how its importance changes 

based on the value of other features. 

The analysis reveals a profound non-linear 

relationship between (from firm ) and the 

predicted risk (of firm ), which is heavily 

conditional on the aggregate realized volatility () 

of the entire system. 

Low Volatility Regime (Stable Market): When is 

low, a high (i.e., aggressive buying or selling 

pressure from) has a minimal positive SHAP value 

for. This implies that in calm markets, the market 

can easily absorb a liquidity shock from a single 

institution, and the signal from the imbalance is 

largely idiosyncratic noise. 

High Volatility Regime (Stressed Market): When is 

high (e.g., in the upper quartile), the same high 

generates an exponentially higher positive SHAP 

value. This dramatic non-linearity indicates that 

the marginal impact of a microstructure shock 

(like) on systemic risk is orders of magnitude 

greater when the system is already stressed. It 

confirms that risk transmission is not additive but 

multiplicative—a small change in microstructure 

acts as an explosive catalyst when volatility is 

already elevated. 

This finding—that microstructural channels are 

dormant in calm markets but become 

overwhelmingly powerful during crises—provides 

a deep, non-linear validation of the RF approach. 

It explicitly demonstrates why linear models, 

which would assign a constant weight to , 

fundamentally underestimate the risk of 

contagion during tail events. 

2.4.4.2 Visualizing Non-Linear Dependencies 

To illustrate this effect visually, we employ SHAP 

dependence plots, which display the relationship 

between a single feature's value and its 

corresponding SHAP value. By coloring the points 

based on a secondary, interacting feature (like ), 

we can map the conditional dependence. 

The visualization shows a clear separation: the 

high- instances associated with high (darker color 

points) cluster high on the SHAP value axis, 

confirming their disproportionate role in driving 

systemic risk during stressed periods. This non-

linear, conditional impact of microstructure on tail 

risk is perhaps the most profound theoretical 

insight that is supported by the interpretable ML 

framework. 

2.4.5 Robustness and Statistical Significance of 

Feature Attribution 

To ensure the reliability of the SHAP-derived 

network attribution, we perform a sensitivity 

analysis. By sampling subsets of the training data 

and recalculating the SHAP values, we ensure that 

the attributed feature importance is stable and 

not merely a byproduct of random variability 

inherent in the RF tree construction . 

The statistical significance of the feature 

attributions is formally tested using a 

methodology analogous to the Benjamini-

Hochberg (BH) procedure for controlling the False 

Discovery Rate (FDR) . Since we are dealing with 

thousands of feature-prediction pairs (a local 

multiple-testing problem), the standard BH 

approach is applied to the absolute SHAP values 

across all predictions for a given period. This 

filtering step ensures that only the most robust, 

non-zero-contributing feature attributions are 

used to infer the final network edge weights, thus 

preventing the inference of spurious links that 

might arise from small, insignificant random noise 

in the RF . This rigorous validation process ensures 

that the ML-inferred network is both economically 

meaningful and statistically sound. 

2.4.6 Implications for Regulatory Policy: 

Attributable Risk Capital 
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The interpretability analysis transforms the model 

from a predictive tool into a regulatory 

mechanism for attributable risk capital 

assignment. Instead of simply penalizing firms 

based on their aggregated To-Connectedness 

score (a global measure), regulators can use the 

local SHAP decomposition to assign a 

Microstructure Spillover Charge to Institution . 

Specifically, the regulator could use the sum of 

positive SHAP values attributed to features across 

all other institutions to calculate 's instantaneous 

liquidity-contagion contribution. This provides a 

clear, quantitative basis for intervention: an 

institution is only penalized or required to hold 

extra capital if its specific trading behavior, as 

reflected in its high-frequency footprint, is 

demonstrably pushing the system toward higher 

risk. 

This approach addresses the inherent complexity 

of high-frequency data by providing both the 

accuracy required for robust prediction and the 

explainability required for equitable and 

transparent financial regulation. 

2.3 Systemic Risk Metrics and Evaluatio 

The inferred weighted, directed network is 

analyzed using established graph theory metrics : 

Out-Degree (To-Connectedness): . This measures 

the total influence or spillover transmission from 

firm to the rest of the system. High firms are 

potential transmitters of risk. 

In-Degree (From-Connectedness): . This measures 

the total influence or spillover reception that firm 

receives from the system. High firms are 

susceptible to risk contagion. 

The model’s predictive accuracy is evaluated using 

standard classification metrics, with a particular 

focus on the Receiver Operating Characteristic 

(ROC) curve and the Area Under the Curve (AUC) . 

The AUC score, which ranges from 0 to 1, 

measures the model’s ability to correctly rank 

positive and negative cases (i.e., identifying 

distress versus non-distress). 

3.0 Results 

3.1 Descriptive Statistics and Feature Analysis 

The dataset spans from to , covering trading days 

and major US financial institutions. The average 

daily transaction volume for the selected panel 

was , highlighting the massive scale of the HFT 

data processed. 

An initial analysis of the Random Forest feature 

importance provided critical insights into the 

drivers of future risk. While lagged realized 

volatility () was a significant predictor, the most 

salient factors were consistently the 

microstructure-informed features. Specifically, 

the daily mean and standard deviation of the 

Order-Book Imbalance (,) collectively accounted 

for an average of of the total feature importance 

across all firm models. This immediately 

underscores the value of the ultra-high-frequency 

data, suggesting that the pressure imbalance in 

the limit order book, a proxy for informed trading 

, is a primary non-linear driver of future systemic 

stress. 

Crucial Data Point Inclusion: A comparative 

assessment was performed by training a baseline 

RF model using only lagged Realized Volatility () 

and a full model including all microstructure 

features. The full model, incorporating order-book 

imbalance metrics, resulted in an average AUC for 

the 5-day-ahead systemic risk prediction of 0.75, 

which represents an average improvement in 

prediction accuracy over the baseline -only 

model's AUC of 0.67. This finding empirically 

confirms the superior predictive power of 

microstructural information in identifying future 

tail-risk events. 

3.2 Dynamic Network Topology 

The inferred financial network exhibited 

significant temporal variation. Network density, 

measured by the average edge weight, displayed 

sharp increases corresponding to periods of 

documented market stress. For example, during 

the, the average "From" and "To" connectedness 
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scores across the entire network surged by over a 

two-week period, indicating a dramatic tightening 

of financial linkages. 

A comparison between the RF-inferred network 

and a simpler realized correlation network 

revealed marked differences: 

Correlation Network: Symmetrical and dense, 

failing the Benjamini-Hochberg procedure for 

multiple testing, suggesting many spurious edges. 

RF Network: Highly sparse (average density of only 

), strongly directed, and exhibiting a clear core-

periphery structure. The RF network weights often 

predicted risk from smaller, more volatile 

institutions toward larger, more diversified ones, 

which is consistent with the non-linear spillover of 

localized stress. 

These results demonstrate that the HFT-driven, 

ML-inferred network is not simply a proxy for co-

movement but rather a model of predictive 

influence, better equipped to isolate genuine risk 

channels. 

3.3 Identification of Systemically Important 

Institutions (SIIs) 

The dynamic analysis of To-Connectedness () 

successfully identified the Systemically Important 

Institutions (SIIs) in a time-varying manner. 

During stable periods, the ranking of SIIs was 

relatively constant, dominated by a few large, 

diversified banks (consistent with NAICS codes for 

Commercial Banking). However, during periods of 

heightened stress (e.g., the Q4 2018 volatility 

spike), the ranking became significantly more 

volatile. Institutions classified as Investment 

Banking and Securities Dealing (NAICS code ) 

temporarily climbed the rank, surpassing 

traditional banks. This suggests that in times of 

crisis, securities trading firms are associated with 

being transient but critical transmitters of market 

risk via the microstructure channels (e.g., liquidity 

hoarding). 

Furthermore, the institutions with high -

Connectedness (i.e., susceptible to risk) were 

often not the same as those with high -

Connectedness (i.e., transmitters of risk). The 

analysis revealed a group of highly specialized 

financial intermediaries that consistently received 

high spillover, indicating they are often the most 

vulnerable points in the network, even if they are 

not the source of the shock. This distinction is vital 

for regulatory stress testing. 

4.0 Discussion 

4.1 The Power of Microstructure for Network 

Learning 

This study provides compelling evidence that 

financial network inference is significantly 

enhanced by moving to a framework that 

integrates high-frequency data with sophisticated 

machine learning algorithms. The results 

unequivocally show that features derived from 

market microstructure—especially those 

capturing order-book imbalance—are not only 

statistically significant but also practically superior 

predictors of future systemic risk compared to 

traditional measures like realized volatility. The 

non-linear relationship modeled by the Random 

Forest is critical here; it captures the intricate, 

conditional dependencies between the 

instantaneous actions of traders and the 

subsequent propagation of risk across the system. 

The RF-inferred network successfully isolated a 

sparse, directed structure of influence, 

demonstrating that the HFT-driven, ML-inferred 

network reveals dynamics that are obscured by 

traditional, lower-frequency approaches. 

This superior predictive power validates the core 

argument that risk spillovers in modern markets 

are fundamentally rooted in the flow of 

information and liquidity as expressed in the 

microstructure. When an institution faces stress, 

its market activity (e.g., aggressive selling, 

reduced quoting depth leading to high ) transmits 

a systemic signal that predicts risk faster and more 

accurately than its lagged returns or quarterly 

reports ever could. 

4.2 Policy Implications and Financial Stability 
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The dynamic, predictive network model 

developed here has profound implications for 

financial stability policy. First, the framework 

enables regulators to move beyond static, size-

based designations of Systemically Important 

Institutions (SIIs) to a time-varying, risk-based 

designation. By monitoring the daily -

Connectedness scores, regulators could identify 

transient yet dangerous risk transmitters in real-

time. 

Second, the model's reliance on specific 

microstructure features provides a lever for 

targeted policy intervention. If high order-book 

imbalance is the primary transmission 

mechanism, policies could focus on automated 

market-making stability, dynamic circuit breakers 

for illiquid stocks, or differential capital 

requirements based on a firm’s average 

microstructure spillover score. 

Furthermore, the integration of the SHAP 

interpretability framework (Section 2.4) offers a 

new paradigm for regulatory intervention: 

attributable risk. Regulators can base capital 

charges not merely on size or aggregate 

interconnectedness, but on verifiable, specific 

contributions to systemic risk, such as the 

calculated Microstructure Spillover Charge. This 

makes regulation more transparent and 

scientifically justifiable. 

4.3 Limitations and Future Research 

While this study offers a major step forward, 

several limitations naturally arise. The 

computational burden of processing petabytes of 

HFT data remains a significant hurdle, restricting 

the historical depth and breadth of firms that can 

be analyzed daily. While the SHAP analysis 

mitigated the "black box" issue for the Random 

Forest model, the model itself remains 

correlational; it predicts risk spillover but does not 

prove the fundamental causality of the 

relationship. 

Crucially, the study concludes that current 

network models, even those leveraging high-

frequency data and XAI frameworks, still face 

significant challenges in capturing ALL complex, 

non-linear dimensions of contagion, especially 

during periods of extreme, unprecedented market 

stress. The model successfully predicts known 

types of contagion but may struggle when facing 

novel, structural risk (e.g., political shocks or 

systemic cyber events not reflected in historical 

market data). Future research must therefore 

explore the integration of additional data streams, 

such as the use of Multilayer Information Spillover 

Networks that simultaneously model risk via 

returns, volatility, and microstructure, or the 

incorporation of textual data (NLP) from news and 

regulatory filings to capture non-market risk 

factors. The next generation of models must strive 

for complete systemic risk coverage. 
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