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ABSTRACT

Purpose: This study investigates the utilization of high-frequency trade (HFT) data, combined with advanced machine
learning (ML) techniques, to infer and analyze dynamic financial networks for the purpose of systemic risk
assessment. Traditional network models often fail to capture the rapid, non-linear dependencies that propagate
systemic risk, particularly under volatile conditions.

Methodology: We develop a novel framework that leverages HFT data from firms to construct a rich feature space,
including realized volatility and granular market microstructure proxies such as order-book imbalance. A Random
Forest (RF) model is employed to learn the non-linear relationship between firm-specific features and future systemic
risk contribution, with the resultant feature importance scores defining the dynamic, directed network edges. An
Explainable Al (XAl) framework, using SHAP values, is implemented to address the "black box" nature of the RF
and provide attributable risk contributions.

Results: Our ML-driven network consistently reveals dynamic dependencies that are obscured in lower-frequency
analyses. We find that the inclusion of order-book imbalance metrics enhances the prediction accuracy (AUC) of
systemic risk events by an average of compared to models relying solely on realized volatility. The XAl analysis
reveals that the marginal impact of microstructure shocks on systemic risk is non-linear and becomes exponentially
greater during periods of high market volatility.

Conclusion: The integration of HFT data and ML offers a powerful lens into the architecture of systemic risk.
However, while offering superior insight and explainability, the study concludes that current network models still
face significant challenges in capturing all complex, non-linear dimensions of contagion, especially during extreme,
unprecedented market stress. Further research into multilayer networks and alternative ML architectures is warranted.

Keywords: Financial Networks, High-Frequency Data (HFT), Systemic Risk, Market Microstructure, Machine
Learning (Random Forest), Realized Volatility, Order Book Imbalance

1.0 Introduction single large institution failing; rather, it is the risk
1.1 Background and Motivation that distress in one part of the system spills over,

triggering a cascading chain of failures that

The modern global financial  system is threatens the stability of the entire financial

characterized by an unprecedented level of structure. The crises of the past—from the Russian
default of 1998 to the 2008 Global Financial Crisis

—have underscored the urgent necessity for

interconnectedness and complexity. This tight
coupling of institutions and markets, while

fostering efficiency, simultaneously magnifies the . .
INg ethiciency, simu usly magnit reliable and timely methods to measure and

potential - for contagion and systemic risk. monitor these hidden network dependencies.

Systemic risk is no longer merely the risk of a
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Traditionally, measures of systemic risk relied on
macro-economic indicators or relatively low-
frequency data, such as daily or monthly returns
and balance sheet information. However, the rise
of algorithmic trading and massive volumes of
market transactions has shifted the underlying
reality: market dynamics now unfold at the speed
of light, driven by a dense ecology of interactions
This
microstructure—the process and outcomes of

known as market microstructure.
exchanging assets, visible through the flow of limit
orders, trade executions, and quotes—is the true
engine of short-term price discovery and risk
propagation. Lower-frequency models inevitably
suffer from aggregation bias, obscuring the rapid,
transient, and non-linear dependencies that
constitute genuine systemic risk channels. The
primary motivation of this study is rooted in the
conviction that the most accurate signals of
financial interconnectedness and impending
systemic stress reside within the high-granularity
data of the market microstructure. Failure to
utilize this information limits the efficacy of both

prediction and policy intervention.
1.2 Financial Network Modeling: A Review

The study of financial interconnectedness has
evolved significantly. Early methods focused
primarily on simple pairwise correlation matrices
derived from asset returns. These were later
refined by techniques such as Granger causality,
which attempted to establish the direction of
information flow between firms. The pioneering
work by Diebold and Yilmaz introduced the
powerful concept of variance decompositions to
guantify "connectedness," shifting the focus from
simple correlation to spillover effects. Building on
this, models like CoVaR and CoVaR provided a
measure of a firm’s contribution to the system's
risk during distress. More sophisticated
techniques, such as Tail-Event Driven Networks
(TENET), explicitly focus on the network structure
during the extreme tail of the distribution,
providing a more relevant measure of risk

contagion.

https://aimjournals.com/index.php/ijidml

A critical advancement involves the use of realized
measures derived from high-frequency trade
(HFT) data, such as Realized Volatility and Realized
Covariance. By using the sum of squared intra-day
returns, these measures provide robust, model-
free estimates of true asset volatility, offering a
substantial model-based

improvement over

estimates. Brownlees et al. formalized this
approach by introducing "realized networks,"
where network edges are inferred directly from
realized covariance measures. This represents a
significant step forward, moving from return-

based networks to volatility-based networks.

Despite these advancements, a gap persists: most
established network models, even those using
realized measures, fail to fully exploit the richest
informational layer—the actual order book and
trade flow dynamics. As highlighted by Easley et
al., discerning information from raw trade data,
beyond simple returns, is crucial. This research
strongly emphasizes how the high granularity of
trade data
network

(market microstructure) reveals

connections and  systemic risk
contributions that are associated with, and often
obscured in, lower-frequency models. The
massive volume and complex non-linear nature of
HFT data,

methodological approach, specifically one capable

however, necessitates a new
of handling ultra-high dimensionality and non-

linearity—namely, machine learning.
1.3 Objectives and Contribution

The primary objective of this study is to develop
and rigorously evaluate a machine learning
framework for dynamically inferring financial
interconnectedness using features derived from
This
approach aims to move beyond linear modeling

high-frequency trade and quote data.

assumptions and capture the non-linear

relationship of risk spillovers in financial markets.

The key contributions of this paper are:

Feature Engineering: Constructing a novel,

microstructural-rich feature set that

systematically integrates realized measures with
pg. 10
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(e.g., liquidity and

imbalance measures) to predict forward-looking

order-book dynamics

systemic risk contributions.

Machine Learning Inference: Applying the
Random Forest (RF) algorithm to the high-
dimensional HFT feature set to non-linearly model
and infer the directed edges of the financial
network, using feature importance as a proxy for

the strength of financial connection.

Model
Explainable Al (XAl) framework to decompose the

Interpretability:  Implementing  an
RF's non-linear predictions, providing attributable
risk contributions that confirm the non-linear,
conditional impact of microstructure features on
systemic risk.

Performance and Policy Evaluation: Providing a
robust comparison demonstrating the superior
predictive power of the HFT-driven ML network in
identifying future systemic distress, compared to
traditional linear and realized volatility-based
benchmarks.

2.0 Methodology
2.1 Data Collection and Preprocessing
2.1.1 Data Source and Scope

The data for this study is drawn from two primary
sources: the NYSE Trade and Quote (TAQ)
Database and the Center for Research in Security
Prices (CRSP) The TAQ database provides
transaction-level data, including time-stamped
trades and the best bid and ask quotes for US-
listed equities, captured at millisecond precision.
The CRSP data is utilized to obtain accurate daily
returns and corporate structure information (e.g.,
NAICS codes ) for filtering and classification. We
focus on a panel of large financial institutions,
defined by their industry classification, over a
continuous period of trading days.

2.1.2 High-Frequency Feature Construction

For each firm and day, we first construct standard
realized volatility measures. The 5-minute mid-
guote returns are calculated, and the daily
Realized Volatility () is estimated as the sum of

https://aimjournals.com/index.php/ijidml

squared 5-minute returns during regular trading
hours. Similarly, the daily Realized Covariance ()
and Realized Correlation () between firms and are
calculated using the product of their 5-minute
returns. These form the baseline set of realized
features.

2.1.3 Microstructure-Informed Features

To capture the informational content of market
microstructure, we derive features directly from
the raw quote data, specifically focusing on the
pressure imbalance within the limit order book.

Order-Book Imbalance (OBI): This measure is
critical as it quantifies the relative pressure of
buyers versus sellers at the best price levels. It is
typically defined as: We aggregate the OBI over
intra-day intervals (e.g., 5-minute) to create
realized measures of imbalance, such as the mean
and standard deviation of OBl (MOBIi,t, SOBIi,t).
These metrics reflect transient price movements
and liquidity dynamics, providing crucial, high-
frequency insight into informed trading.

Liquidity Proxies: Following Chordia et al., we also
include various high-frequency proxies for
illiquidity, such as the daily average of the bid-ask
spread and the adverse selection component, as
these are often associated with information

asymmetry and risk.

In total, for each firm on day, we construct a high-
dimensional feature vector comprising lagged
realized volatility, lagged realized correlation to
other firms, and various market microstructure-
informed features (e.g.)

2.2 Network Inference Framework

2.2.1 Target Variable Definition (Systemic Risk
Proxy)

Inferring the dynamic financial network requires a

reliable measure of future systemic risk
contribution. We define the target variable, , as an
indicator of whether firm will be in distress (e.g.,
fall below a critical value of capital or experience
extreme negative returns, similar to the approach

in and ) in a future period(e.g., days). The network

pg. 11
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edges are then defined by the influence of firm 's
current features () on firm 's future risk ().

2.2.2 The Necessity of Machine Learning

The connection between market microstructure
and risk spillovers is inherently non-linear and
complex. For instance, the impact of a large
(a microstructure feature)

imbalance on a

subsequent jump may be

monotonic and highly conditional

volatility non-
on other
such as overall market

factors, liquidity.

Traditional linear models, such as vector
autoregressions (VAR), struggle to capture these
intricate, high-dimensional interactions and are
particularly poor at predicting rare, non-average

events (the "tail" risk).

This section justifies the necessity of employing
machine learning techniques, specifically Random
Forests, to effectively process the massive volume
and complexity of HFT data for network inference.
Machine learning, particularly non-parametric
methods, allows for the discovery of complex
relationships without restrictive a priori linearity
assumptions . Given the high dimensionality of our
feature space and the need to capture complex
interactions, an ML approach is indispensable.

2.2.3 Random Forest for Feature Selection and
Edge Weighting

We employ the Random Forest (RF) algorithm to
model the relationship. The RF is an ensemble
learning method that constructs a multitude of
decision trees and outputs the class that is the
mode of the classes (for classification) or the mean
prediction (for regression) of the individual trees.
Its advantages include robustness to overfitting,
computational efficiency with large datasets, and
the ability to measure Feature Importance.

For each predicted firm, we train an RF classifier.
The directed network edge weight from firm to
firm, denoted, is defined by the importance of
firm 's feature set in predicting the systemic risk of
firm. Specifically, we utilize the permutation

https://aimjournals.com/index.php/ijidml

importance measure, which quantifies the
decrease in predictive accuracy when the values

of are randomly permuted. This measure:

Provides a non-linear, robust measure of

influence.

Is naturally directed: the importance of in

predicting does not necessarily equal the

importance of in predicting.

Allows for dynamic updating of the network on a
daily or weekly basis.

2.4 Interpretability Analysis and Non-Linear
Feature Contribution

While the Random Forest (RF) model offers
substantial advantages in handling the high-
high-
inherently

dimensionality and non-linearity of
frequency data

positions

its complexity
"black box"

in financial

it as a model . For

applications stability, particularly
those intended for regulatory oversight, the lack
of transparency in how a prediction is derived—
the so-called "explainability"  problem—
represents a significant barrier to adoption.
Regulators require not just an accurate prediction
of systemic risk, but also a clear, attributable
reason for why a specific firm is designated as an
emerging Systemically Important Institution (SII)
on a given day. To address this crucial limitation
and provide a granular understanding of the non-
linear risk transmission channels identified by the
RF, we incorporate an advanced model-agnostic

interpretability framework.

2.4.1 The Need for Explainable Financial Network
Models

Traditional linear models, such as those based on
Vector Autoregressions (VAR) or even simple
Realized Covariance, are intrinsically transparent:
the coefficient magnitude directly indicates the
direction and strength of influence. In contrast,
the RF model’s output—the network edge weight
based on feature importance—is a global measure
that does not explain the conditional impact of
nor does it detail

features, which specific

pg. 12
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microstructural features are driving risk for an
individual institution on a particular day.

To overcome this, we require a method that can
decompose the RF output into contributions from
individual input features. This capability serves
two primary purposes: first, it validates the
model’s use of market microstructure data by
confirming their economic intuition; second, it
provides regulatory decision-makers with local
explanations for every prediction, thereby
transforming the abstract network edge weight

into a precise, attributable risk metric.

2.4.2 SHAP
Methodology

(SHapley Additive exPlanations)

We adopt the SHAP (SHapley Additive
exPlanations) framework, a methodology rooted
in cooperative game theory . SHAP values assign
to each feature an importance value for a
particular prediction. This value represents the
feature's contribution to the difference between
the actual prediction and the average prediction
(the baseline expectation). SHAP is an ideal choice
because it satisfies several desirable properties,
including efficiency, symmetry, and the dummy
feature property, guaranteeing a fair and
mathematically sound attribution of importance.

The SHAP value @k for feature k is calculated by:

Where is the set of all features, is a subset of
features excluding feature, and is the model
prediction using only the features in the set.

In the context of our network, we calculate SHAP
values for every feature (where is the source firm
and is the specific feature like or) used to predict
the systemic risk of the target firm. The sum of the
SHAP values attributed to all features originating
from firm provides the local, directional influence
of firm on firm 's risk for that specific day. This
refinement of the edge weight allows us to
understand not just that influences, but how
much and through which microstructural channel
(,, etc.).

https://aimjournals.com/index.php/ijidml

2.4.3
Individual Risk Predictions

Local Interpretability: Decomposing

The most direct utility of SHAP lies in its ability to
provide local explanations for the daily systemic
risk prediction of each firm. When the RF model
identifies firm as being at high risk of distress (i.e.,
is predicted to be 1), the SHAP decomposition
provides a clear, quantitative breakdown of the
features that pushed the prediction toward risk.

For instance, consider a scenario where the
predicted risk is , against a baseline average risk of
. The SHAP analysis might reveal:

High positive contribution: A large, positive SHAP
attributed to (Mean Order-Book
Imbalance) originating from Institution, indicating

value is

that 's aggressive buying/selling pressure is
strongly pushing 's predicted risk higher.

Moderate negative contribution: A negative SHAP
value is attributed to (Realized Volatility) of firm
itself, indicating that low past volatility is
mitigating the risk somewhat, but not enough to

counteract the external pressure.

By analyzing the SHAP decomposition daily,

regulators gain an immediate, actionable
understanding of the contagion path. If Institution
is suddenly exerting strong influence via its
features, it suggests an acute liquidity or
informational shock originating from. This level of
precision moves systemic risk analysis from a
retrospective study to a real-time, diagnostic tool,
fulfilling the demand for interpretability in high-

stakes financial applications.

2.4.4 Global
Interaction Effects

Interpretability:  Non-Linear

Beyond local explanations, SHAP provides tools
for global interpretability, which is essential for
confirming economic theory and validating the
necessity of using non-linear models. This allows
us to visualize the conditional relationship
between features and risk outcomes, which
cannot be captured by simple correlation or linear

Granger causality.

pg. 13
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2.4.4.1 The Conditional Effect of Order-Book
Imbalance ()

We focus the global interpretability analysis on
the interaction effects involving the Order-Book
Imbalance () features, which were identified as
providing the predictive edge (Section 3.1). The
standard feature importance only tells us that is
important overall; SHAP interaction values allow
us to understand how its importance changes
based on the value of other features.

The analysis reveals a profound non-linear
relationship between (from firm ) and the
predicted which

conditional on the aggregate realized volatility ()

risk (of firm ), is heavily

of the entire system.

Low Volatility Regime (Stable Market): When is
low, a high (i.e., aggressive buying or selling
pressure from) has a minimal positive SHAP value
for. This implies that in calm markets, the market
can easily absorb a liquidity shock from a single
institution, and the signal from the imbalance is
largely idiosyncratic noise.

High Volatility Regime (Stressed Market): When is
high (e.g., in the upper quartile), the same high
generates an exponentially higher positive SHAP
value. This dramatic non-linearity indicates that
the marginal impact of a microstructure shock
(like) on systemic risk is orders of magnitude
greater when the system is already stressed. It
confirms that risk transmission is not additive but
multiplicative—a small change in microstructure
acts as an explosive catalyst when volatility is
already elevated.

This finding—that microstructural channels are

dormant in calm markets but become
overwhelmingly powerful during crises—provides
a deep, non-linear validation of the RF approach.
It explicitly demonstrates why linear models,
which would assign a constant weight to ,
fundamentally underestimate the risk of

contagion during tail events.

2.4.4.2 Visualizing Non-Linear Dependencies

https://aimjournals.com/index.php/ijidml

To illustrate this effect visually, we employ SHAP
dependence plots, which display the relationship
between a single feature's value and its
corresponding SHAP value. By coloring the points
based on a secondary, interacting feature (like ),

we can map the conditional dependence.

The visualization shows a clear separation: the
high- instances associated with high (darker color
points) cluster high on the SHAP value axis,
confirming their disproportionate role in driving
systemic risk during stressed periods. This non-
linear, conditional impact of microstructure on tail
risk is perhaps the most profound theoretical
insight that is supported by the interpretable ML
framework.

2.4.5 Robustness and Statistical Significance of
Feature Attribution

To ensure the reliability of the SHAP-derived
network attribution, we perform a sensitivity
analysis. By sampling subsets of the training data
and recalculating the SHAP values, we ensure that
the attributed feature importance is stable and
not merely a byproduct of random variability
inherent in the RF tree construction .

The statistical significance of the feature
attributions is formally tested wusing a
methodology analogous to the Benjamini-

Hochberg (BH) procedure for controlling the False
Discovery Rate (FDR) . Since we are dealing with
thousands of feature-prediction pairs (a local
standard BH
approach is applied to the absolute SHAP values

multiple-testing problem), the

across all predictions for a given period. This
filtering step ensures that only the most robust,
non-zero-contributing feature attributions are
used to infer the final network edge weights, thus
preventing the inference of spurious links that
might arise from small, insignificant random noise
in the RF . This rigorous validation process ensures
that the ML-inferred network is both economically
meaningful and statistically sound.

2.4.6 Implications for
Attributable Risk Capital

Regulatory Policy:

pg. 14
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The interpretability analysis transforms the model

from a predictive tool into a regulatory
attributable  risk

assignment. Instead of simply penalizing firms

mechanism  for capital
based on their aggregated To-Connectedness
score (a global measure), regulators can use the
SHAP
Microstructure Spillover Charge to Institution .

local decomposition to assign a

Specifically, the regulator could use the sum of
positive SHAP values attributed to features across
all other institutions to calculate 's instantaneous
liquidity-contagion contribution. This provides a
clear, quantitative basis for intervention: an
institution is only penalized or required to hold
extra capital if its specific trading behavior, as
reflected in its high-frequency footprint, is
demonstrably pushing the system toward higher
risk.

This approach addresses the inherent complexity
of high-frequency data by providing both the
accuracy required for robust prediction and the
required for

explainability equitable and

transparent financial regulation.
2.3 Systemic Risk Metrics and Evaluatio

The inferred weighted, directed network is
analyzed using established graph theory metrics :

Out-Degree (To-Connectedness): . This measures
the total influence or spillover transmission from
firm to the rest of the system. High firms are
potential transmitters of risk.

In-Degree (From-Connectedness): . This measures
the total influence or spillover reception that firm
receives from the system. High firms are
susceptible to risk contagion.

The model’s predictive accuracy is evaluated using
standard classification metrics, with a particular
focus on the Receiver Operating Characteristic
(ROC) curve and the Area Under the Curve (AUC) .
The AUC score, which ranges from 0 to 1,
measures the model’s ability to correctly rank
positive and negative cases (i.e., identifying
distress versus non-distress).

https://aimjournals.com/index.php/ijidml

3.0 Results
3.1 Descriptive Statistics and Feature Analysis

The dataset spans from to , covering trading days
and major US financial institutions. The average
daily transaction volume for the selected panel
was , highlighting the massive scale of the HFT
data processed.

An initial analysis of the Random Forest feature
importance provided critical insights into the
drivers of future risk. While lagged realized
volatility () was a significant predictor, the most
salient  factors

were  consistently  the

microstructure-informed features. Specifically,
the daily mean and standard deviation of the
Order-Book Imbalance (,) collectively accounted
for an average of of the total feature importance
This
underscores the value of the ultra-high-frequency

across all firm models. immediately
data, suggesting that the pressure imbalance in
the limit order book, a proxy for informed trading
, is a primary non-linear driver of future systemic

stress.

Data Point Inclusion:

assessment was performed by training a baseline

Crucial A comparative
RF model using only lagged Realized Volatility ()
and a full model including all microstructure
features. The full model, incorporating order-book
imbalance metrics, resulted in an average AUC for
the 5-day-ahead systemic risk prediction of 0.75,
which represents an average improvement in
prediction accuracy over the baseline -only
model's AUC of 0.67. This finding empirically
confirms the superior predictive power of
microstructural information in identifying future

tail-risk events.
3.2 Dynamic Network Topology

exhibited
significant temporal variation. Network density,

The inferred financial network
measured by the average edge weight, displayed
sharp increases corresponding to periods of
documented market stress. For example, during

the, the average "From" and "To" connectedness

pg. 15
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scores across the entire network surged by over a
two-week period, indicating a dramatic tightening
of financial linkages.

A comparison between the RF-inferred network

and a simpler realized correlation network

revealed marked differences:

Correlation Network: Symmetrical and dense,
failing the Benjamini-Hochberg procedure for
multiple testing, suggesting many spurious edges.

RF Network: Highly sparse (average density of only
), strongly directed, and exhibiting a clear core-
periphery structure. The RF network weights often
predicted risk from smaller, more volatile
institutions toward larger, more diversified ones,
which is consistent with the non-linear spillover of

localized stress.

These results demonstrate that the HFT-driven,
ML-inferred network is not simply a proxy for co-
movement but rather a model of predictive
influence, better equipped to isolate genuine risk
channels.

3.3 Identification of Systemically
Institutions (Slis)

Important

The dynamic analysis of To-Connectedness ()
successfully identified the Systemically Important
Institutions (Slls) in a time-varying manner.

During stable periods, the ranking of Slls was
relatively constant, dominated by a few large,
diversified banks (consistent with NAICS codes for
Commercial Banking). However, during periods of
heightened stress (e.g., the Q4 2018 volatility
spike), the ranking became significantly more
volatile. Institutions classified as Investment
Banking and Securities Dealing (NAICS code )
climbed the

traditional banks. This suggests that in times of

temporarily rank, surpassing
crisis, securities trading firms are associated with
being transient but critical transmitters of market
risk via the microstructure channels (e.g., liquidity

hoarding).

institutions with high -

Connectedness (i.e., susceptible to risk) were

Furthermore, the

https://aimjournals.com/index.php/ijidml

often not the same as those with high -
Connectedness (i.e., transmitters of risk). The
analysis revealed a group of highly specialized
financial intermediaries that consistently received
high spillover, indicating they are often the most
vulnerable points in the network, even if they are
not the source of the shock. This distinction is vital
for regulatory stress testing.

4.0 Discussion

4.1 The Power of Microstructure for Network
Learning

This study provides compelling evidence that

financial network inference is significantly
enhanced by moving to a framework that
integrates high-frequency data with sophisticated
The

unequivocally show that features derived from

machine learning algorithms. results

market microstructure—especially those
capturing order-book imbalance—are not only
statistically significant but also practically superior
predictors of future systemic risk compared to
traditional measures like realized volatility. The
non-linear relationship modeled by the Random
Forest is critical here; it captures the intricate,
between the
and the

subsequent propagation of risk across the system.

conditional dependencies

instantaneous actions of traders
The RF-inferred network successfully isolated a
sparse, directed structure of influence,
demonstrating that the HFT-driven, ML-inferred
network reveals dynamics that are obscured by

traditional, lower-frequency approaches.

This superior predictive power validates the core
argument that risk spillovers in modern markets
are fundamentally rooted in the flow of
information and liquidity as expressed in the
microstructure. When an institution faces stress,
its market activity (e.g., aggressive selling,
reduced quoting depth leading to high ) transmits
a systemic signal that predicts risk faster and more
accurately than its lagged returns or quarterly

reports ever could.

4.2 Policy Implications and Financial Stability
pg. 16
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The
developed here has profound implications for

dynamic, predictive network model
financial stability policy. First, the framework
enables regulators to move beyond static, size-
based designations of Systemically Important
Institutions (Slls) to a time-varying, risk-based
daily -
Connectedness scores, regulators could identify

designation. By monitoring the
transient yet dangerous risk transmitters in real-
time.

Second, the model's reliance on specific
microstructure features provides a lever for
targeted policy intervention. If high order-book
imbalance is the primary transmission
mechanism, policies could focus on automated
market-making stability, dynamic circuit breakers
capital

average

for illiquid stocks, or differential

requirements based on a firm’s

microstructure spillover score.

Furthermore, the integration of the SHAP
interpretability framework (Section 2.4) offers a
new paradigm for regulatory intervention:
attributable risk. Regulators can base capital
charges not merely on size or aggregate
interconnectedness, but on verifiable, specific
contributions to systemic risk, such as the
calculated Microstructure Spillover Charge. This
makes more and

regulation transparent

scientifically justifiable.
4.3 Limitations and Future Research

While this study offers a major step forward,
The
computational burden of processing petabytes of

several limitations naturally arise.
HFT data remains a significant hurdle, restricting
the historical depth and breadth of firms that can
be analyzed daily. While the SHAP analysis
mitigated the "black box" issue for the Random
itself

correlational; it predicts risk spillover but does not

Forest model, the model remains

prove the fundamental causality of the
relationship.
Crucially, the study concludes that current

network models, even those leveraging high-

https://aimjournals.com/index.php/ijidml

frequency data and XAl frameworks, still face
significant challenges in capturing ALL complex,
non-linear dimensions of contagion, especially
during periods of extreme, unprecedented market
stress. The model successfully predicts known
types of contagion but may struggle when facing
novel, structural risk (e.g., political shocks or
systemic cyber events not reflected in historical
market data). Future research must therefore
explore the integration of additional data streams,
such as the use of Multilayer Information Spillover
Networks that simultaneously model risk via
returns, volatility, and microstructure, or the
incorporation of textual data (NLP) from news and
regulatory filings to capture non-market risk
factors. The next generation of models must strive
for complete systemic risk coverage.
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