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ABSTRACT 

 

Background: Causal discovery from observational data is a critical challenge across scientific disciplines. While 

traditional methods often rely on correlation, they fail to distinguish between causation and spurious association. The 

Linear Non-Gaussian Acyclic Model (LiNGAM) addresses this by leveraging the non-Gaussianity of data to uniquely 

identify the causal structure, but a comprehensive, user-friendly, and open-source implementation in Python has been 

lacking. 

Met 

hods: We introduce PyCD-LiNGAM, a dedicated Python framework designed for state-of-the-art causal discovery 

using LiNGAM-based methods. The library's core is built around specialized algorithms such as ICA-LiNGAM and 

DirectLiNGAM for robustly inferring causal ordering and estimating connection strengths. The framework is 

architected with a modular design, enabling researchers to easily configure parameters, integrate new methods, and 

handle complex scenarios through advanced features for latent confounder detection and time-series analysis. For 

validation, PyCD-LiNGAM includes tools for statistical reliability assessment via bootstrap methods and uses metrics 

like the Structural Hamming Distance (SHD) to evaluate performance. 

Results: Benchmark experiments conducted on both synthetic and real-world datasets demonstrate that PyCD-

LiNGAM achieves high accuracy and strong scalability. The framework consistently outperforms established 

baseline methods by effectively recovering the true causal graph, especially in settings with non-Gaussian error 

distributions. The built-in visualization tools allow for clear and interpretable representation of the discovered 

directed acyclic graphs. 

Conclusion: PyCD-LiNGAM serves as a foundational and accessible tool for researchers to apply advanced causal 

discovery techniques. Its specialized design and robust implementation lower the barrier for integrating causal 

inference into data analysis pipelines across fields such as econometrics, neuroscience, and genomics. While 

currently focused on linear, acyclic models, future development will aim to extend the framework to include non-

linear methods and improve scalability, further solidifying its role in evidence-based scientific research. 
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INTRODUCTION 

The distinction between correlation and causation is a 

cornerstone of scientific inquiry [25, 29]. While 

traditional statistical methods are adept at identifying 

associations between variables, they often fail to reveal 

the underlying causal mechanisms that drive these 

relationships. For instance, observing that two variables, 

X and Y, are correlated does not, by itself, tell us whether 

X causes Y, Y causes X, or if both are caused by a 

confounding third variable, Z. This ambiguity is a 

significant limitation for fields that depend on drawing 

actionable conclusions from data, such as econometrics, 

neuroscience, genomics, and public policy [12, 26]. The 

challenge is to move beyond mere observation and infer 
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the causal structure from the data itself. 

The field of causal inference has evolved significantly 

over the past few decades, largely driven by the 

theoretical foundations laid out by graphical models [24, 

25]. These models, such as Directed Acyclic Graphs 

(DAGs), provide a powerful language for representing 

causal relationships, where nodes represent variables and 

directed edges represent causal links. Algorithms for 

learning these structures from data have been a major 

focus of research. Early approaches, often called 

constraint-based methods, relied on testing for 

conditional independencies in the data. The PC algorithm 

[40] and its variants [32] are prime examples. These 

methods are powerful but are fundamentally limited by 

the existence of Markov equivalence classes, meaning 

that they cannot distinguish between different causal 

graphs that imply the same set of conditional 

independencies. For example, the structures XtoY, 

XleftarrowY, and XleftarrowZtoY are all 

indistinguishable from observational data alone if the 

underlying distributions are Gaussian. As a result, these 

methods can only recover a partially oriented graph, 

leaving many causal directions undetermined. 

A breakthrough in causal discovery came with the 

development of methods that leverage the properties of 

non-Gaussian data. The Linear Non-Gaussian Acyclic 

Model (LiNGAM) is a prominent example of this 

approach [35, 37]. The core insight of LiNGAM is that if 

the data-generating process is linear and the noise terms 

are non-Gaussian, the causal direction can be uniquely 

identified. Specifically, if a variable X causes a variable 

Y (XtoY), the noise term of Y will be statistically 

independent of X. Conversely, if we were to incorrectly 

assume the reverse direction (YtoX), the noise term of X 

would be a mixture of the original noise terms of both X 

and Y, leading to a distribution that is dependent on the 

other variable. This property, rooted in Independent 

Component Analysis (ICA) [10], provides a powerful 

means to break the statistical equivalency that plagues 

traditional methods, enabling the discovery of a unique 

causal ordering. 

Despite the theoretical power and practical success of 

LiNGAM [19, 23, 36], a significant barrier to its 

widespread adoption has been the lack of a 

comprehensive, user-friendly, and well-documented 

open-source framework in Python. While other libraries 

exist for broader causal inference [15, 16], they often lack 

the specialized implementations and advanced features 

necessary for the full suite of LiNGAM-based methods. 

This fragmentation forces researchers to either build their 

own implementations from scratch or rely on disparate 

tools, hindering reproducibility and slowing down 

research. 

This paper introduces PyCD-LiNGAM, a new Python 

framework designed to provide a unified platform for 

causal discovery using LiNGAM-based methods. Our 

goal is to create a library that is not only powerful and 

accurate but also intuitive and accessible to researchers 

across various fields. PyCD-LiNGAM implements 

foundational algorithms like ICA-LiNGAM and 

DirectLiNGAM, as well as more advanced methods for 

handling complex scenarios such as latent confounders 

and time-series data. We have integrated features for 

statistical reliability assessment and graph visualization 

to ensure that the results are not only robust but also 

interpretable. The subsequent sections will detail the 

architecture of the PyCD-LiNGAM framework, present 

its performance in benchmark experiments, discuss its 

applications and limitations, and outline the future 

directions for its development. 

METHODS: The PyCD-LiNGAM Framework 

The PyCD-LiNGAM framework is designed as a 

specialized, end-to-end solution for causal discovery 

using linear non-Gaussian models. Its architecture is built 

to be modular and extensible, allowing for easy 

customization and future development. The library 

integrates seamlessly with the existing Python data 

science ecosystem, utilizing popular libraries such as 

NumPy for numerical operations, Pandas for data 

handling, and Scikit-learn for a familiar API [27]. The 

framework’s object-oriented design makes it highly 

flexible, allowing users to select different core 

algorithms, independence tests, and reliability methods 

and combine them into a single, cohesive workflow. 

1 Core Causal Discovery Algorithms 

The framework's core functionality is centered on two 

foundational LiNGAM algorithms, which form the basis 

for most of its capabilities. 

1.1 ICA-LiNGAM: Independent Component Analysis 

for Causal Discovery 

The original LiNGAM algorithm, often referred to as 

ICA-LiNGAM, is based on the principle of Independent 

Component Analysis [10, 37]. The underlying structural 

equation model (SEM) for a LiNGAM is defined as: 

$$\mathbf{x} = \mathbf{B}\mathbf{x} + 

\mathbf{e}$$where $\\mathbf{x} = (x\_1, \\ldots, 

x\_n)^T$ is a vector of observed variables, 

$\\mathbf{B}$ is a matrix representing the causal 

connections (with zeros on the diagonal), and 

$\\mathbf{e} = (e\_1, \\ldots, e\_n)^T$ is a vector of 

independent, non-Gaussian error terms. The acyclicity 

assumption implies that the causal graph contains no 

feedback loops, which translates to the matrix 

$\\mathbf{B}$ being a strictly upper-triangular matrix 

after a suitable permutation of variables. This can be 

rewritten as:$$\mathbf{x} = (\mathbf{I} - 

\mathbf{B})^{-1}\mathbf{e}$$ 

https://aimjournals.com/index.php/ijidml


INTERNATIONAL JOURNAL OF INTELLIGENT DATA AND 

MACHINE LEARNING (IJIDML) 

https://aimjournals.com/index.php/ijidml  

 

 

    pg. 3 

where (mathbfI−mathbfB)−1 is a matrix representing the 

full causal effects. ICA aims to find a demixing matrix 

mathbfW such that mathbfs=mathbfWmathbfx, where 

mathbfs is a vector of maximally independent 

components. According to the LiNGAM theory, these 

independent components correspond to the original non-

Gaussian error terms mathbfe. The non-Gaussianity is a 

crucial assumption because the Central Limit Theorem 

dictates that a sum of independent random variables tends 

towards a Gaussian distribution. Therefore, a variable 

that is a cause (a root node) is simply one of the 

independent noise components, while an effect variable 

is a linear combination of its causes' noise components 

and its own noise. The non-Gaussianity of the original 

noise terms ensures that the effects will be a linear 

combination that is not perfectly Gaussian, thus allowing 

ICA to successfully "unmix" them. 

The algorithm proceeds in three main steps: 

1. Centering the Data: The observed data is first 

centered to have a zero mean, which is a standard 

preprocessing step for ICA. 

2. Independent Component Analysis: An ICA 

algorithm is applied to the centered data to find a 

demixing matrix mathbfW that transforms the observed 

variables mathbfx into a set of independent components 

mathbfs. 

3. Causal Order and Matrix Estimation: The 

demixing matrix mathbfW is then used to infer the causal 

structure. The causal ordering is obtained by permuting 

the rows and columns of mathbfW such that the resulting 

matrix is lower-triangular. The causal adjacency matrix 

mathbfB is then computed from this ordered matrix. The 

connection strengths are directly estimated from the non-

zero entries of the resulting mathbfB matrix. 

1.2 DirectLiNGAM: A More Efficient, Direct Approach 

While ICA-LiNGAM is theoretically sound, it can be 

computationally expensive due to the full ICA 

decomposition, which can be unstable for a large number 

of variables. DirectLiNGAM was developed as a more 

direct and efficient alternative [38]. It sidesteps the full 

ICA procedure by identifying the causal ordering one 

variable at a time, based on a simple principle: if a 

variable x_j is a root node (i.e., has no causes among the 

observed variables), its residual when regressed on any 

subset of other variables will be statistically independent 

of the variables in that subset. 

The DirectLiNGAM algorithm works as follows: 

1. Initialize: Start with a set of all observed 

variables mathcalV. 

2. Iterate: Repeat until the set mathcalV is empty. 

○ For each variable x_jinmathcalV, compute the 

residual e_j by regressing x_j on all other variables in the 

current set mathcalVsetminusx_j. 

○ Evaluate the statistical independence between 

the residual e_j and the corresponding variable x_j. 

PyCD-LiNGAM offers a choice of independence tests, 

such as the widely-used kernel-based methods [28] or 

more computationally efficient alternatives. 

○ The variable x_k that yields the most 

independent residual (i.e., the one with the lowest 

dependence measure) is identified as the first cause (the 

root node) in the remaining causal graph. 

○ Add x_k to the causal ordering and remove it 

from the set of variables mathcalV. 

3. Finalize: Once the full causal ordering is 

determined, the causal adjacency matrix mathbfB and the 

connection strengths can be efficiently estimated using 

ordinary least squares regression. 

This step-wise procedure makes DirectLiNGAM 

significantly more scalable and often more robust in 

practice, making it a valuable tool in the PyCD-LiNGAM 

toolkit, particularly for datasets with a larger number of 

variables. 

2 Advanced Functionality 

PyCD-LiNGAM goes beyond the basic implementations 

by including advanced functionalities to handle more 

complex and realistic data scenarios. 

2.1 Handling Latent Confounders 

The assumption that all relevant variables are observed is 

often violated in real-world data. Latent confounders 

(unobserved common causes) can lead to spurious 

correlations and incorrect causal inferences [8, 20]. 

PyCD-LiNGAM includes implementations of methods 

designed to address this issue. For instance, the 

framework incorporates an implementation of the RCD 

(Repetitive Causal Discovery) algorithm [20, 21]. This 

method works by first running a standard causal 

discovery algorithm on the observed variables. It then 

identifies residual variables that are highly correlated, 

suggesting the presence of a latent confounder. The 

algorithm iteratively adds a "dummy" variable to 

represent the latent confounder and repeats the causal 

discovery process until a stable graph is found. This 

robust approach helps to disentangle the true causal links 

from those induced by unobserved variables, providing a 

more accurate causal structure. 

2.2 Time-Series Analysis 

Real-world data often comes in the form of time series, 

where variables are measured over time [6, 11]. Standard 
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LiNGAM assumes a static, cross-sectional dataset. 

PyCD-LiNGAM extends the LiNGAM framework to 

handle temporal data by applying the principles to lagged 

variables [14, 17]. This allows the framework to discover 

causal relationships in dynamic systems, identifying not 

only which variables cause others but also the temporal 

lag of these causal influences. For a set of time series 

variables X_t=(x_1,t,dots,x_n,t), the model is extended 

to: 

xi,t=j =i∑bijxj,t+j=1∑nk=1∑pcijkxj,t−k+ei,t 

where p is the maximum lag. The causal graph can then 

be constructed on the variables and their lagged versions. 

The framework automatically handles the creation of 

lagged variables and applies the chosen LiNGAM 

algorithm to infer the causal relationships within this 

expanded variable set. This enables the discovery of 

causal links like X_t−1toY_t, which are critical for 

understanding dynamic systems. 

2.3 Statistical Reliability and Validation 

A critical aspect of any statistical framework is the ability 

to assess the reliability and significance of its findings. 

PyCD-LiNGAM incorporates several tools to validate 

the inferred causal graphs. 

2.3.1 Bootstrap Methods for Edge Stability 

To assess the robustness of the discovered causal 

structure, the framework includes bootstrap methods 

[18]. The non-parametric bootstrap is a powerful tool for 

this purpose. By resampling the data with replacement to 

create multiple bootstrap samples, and then running the 

causal discovery algorithm on each sample, we can 

generate a distribution of possible causal graphs. This 

allows us to calculate the frequency with which each 

causal link is identified, providing a measure of its 

statistical stability. A link that appears in a high 

percentage of the bootstrap samples is considered more 

reliable. The framework also provides tools to compute 

confidence intervals for the estimated connection 

strengths, giving researchers a comprehensive view of 

the reliability of their findings. 

2.3.2 Performance Metrics for Graph Comparison 

To quantitatively evaluate the performance of PyCD-

LiNGAM, especially in synthetic experiments where the 

ground truth is known, the framework computes standard 

performance metrics. A key metric is the Structural 

Hamming Distance (SHD) [30], which measures the 

number of additions, deletions, or reversals of edges 

needed to transform the inferred graph into the true graph. 

A lower SHD indicates higher accuracy. The SHD is 

particularly useful for comparing the overall structural 

similarity of two graphs. Other metrics like precision (the 

proportion of correctly identified edges among all 

inferred edges) and recall (the proportion of true edges 

that are correctly identified) are also calculated. The F1-

score, which is the harmonic mean of precision and 

recall, provides a balanced measure of performance, 

especially for sparse graphs. 

2.4 Data Visualization and Interpretation 

Understanding a causal graph can be challenging, 

especially for complex systems with many variables. 

PyCD-LiNGAM includes built-in visualization tools to 

generate clear, aesthetically pleasing representations of 

the inferred Directed Acyclic Graphs (DAGs). These 

visualizations are crucial for interpretability and for 

communicating the findings to a broader audience. The 

graphs can be customized to display connection 

strengths, statistical significance, and other relevant 

metadata, making the framework an effective tool for 

both discovery and communication. The visualization 

module is built on widely-used Python plotting libraries, 

ensuring seamless integration and high-quality output for 

publication. 

RESULTS 

 Performance and Validation 

To validate the efficacy and performance of the PyCD-

LiNGAM framework, we conducted a series of 

benchmark experiments using both synthetic and real-

world datasets. The goal was to assess its accuracy, 

scalability, and robustness, and to compare its 

performance against established baseline methods. 

3.1 Experimental Setup 

3.1.1 Synthetic Data Experiments 

Synthetic datasets were generated to precisely control the 

underlying causal structure, connection strengths, and 

noise distributions. We simulated data from a variety of 

linear non-Gaussian SEMs with varying numbers of 

variables (from 5 to 50) and different causal graph 

topologies (e.g., chain, fork, and random graphs). The 

noise terms were drawn from non-Gaussian distributions 

such as the exponential, uniform, and Laplace 

distributions, consistent with the LiNGAM assumption 

[37]. For comparison, we used well-known causal 

discovery algorithms, including the PC algorithm [40], 

and implementations from other frameworks like 

TETRAD [32] and the Causal Discovery Toolbox (CDT) 

[15]. 

To ensure a fair comparison, we generated multiple 

datasets for each configuration (e.g., number of variables, 

graph density) and averaged the results over 100 

repetitions. The performance of each algorithm was 

evaluated based on its ability to recover the true causal 

graph, as measured by SHD, precision, recall, and F1-
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score. We specifically designed experiments to test the 

limits of different algorithms, for instance, by increasing 

the number of variables to challenge scalability and by 

introducing varying levels of non-Gaussianity to test the 

robustness of the LiNGAM-based methods. 

3.1.2 Real-World Data Experiments 

We also applied PyCD-LiNGAM to real-world datasets 

from various domains to demonstrate its practical utility. 

These included: 

● Econometric Data: A dataset of macroeconomic 

indicators to infer causal relationships between market 

indicators and policy decisions [23]. The challenge here 

was to uncover the temporal and contemporaneous causal 

links that drive economic systems. 

● Neuroscience Data: A functional magnetic 

resonance imaging (fMRI) dataset to analyze brain 

connectivity patterns during a cognitive task [22]. The 

goal was to infer the causal flow of information between 

different brain regions. 

● Genomic Data: A gene expression dataset to 

explore the relationships among gene transcripts and 

infer a potential gene regulatory network. This 

application is particularly challenging due to the high 

dimensionality and complexity of the data. 

For these real-world applications, we could not rely on a 

known ground truth. Instead, we focused on the 

interpretability and plausibility of the discovered causal 

graphs, often validating the findings against existing 

domain knowledge or comparing them with results from 

other validated methods. The built-in bootstrap methods 

were especially useful here for assessing the statistical 

confidence in the discovered edges. 

3.2 Performance Metrics 

The performance of PyCD-LiNGAM and the baseline 

methods was evaluated using the following metrics: 

● Structural Hamming Distance (SHD): A measure 

of the difference between the inferred graph and the true 

graph. A lower SHD indicates higher accuracy. The SHD 

is a comprehensive metric that penalizes for missing 

edges, extra edges, and incorrectly oriented edges. 

● Precision: The proportion of correctly identified 

edges among all inferred edges. High precision indicates 

that the algorithm does not produce many false positive 

links. 

● Recall: The proportion of correctly identified 

edges among all true edges. High recall indicates that the 

algorithm does not miss many true causal links. 

● F1-Score: The harmonic mean of precision and 

recall, providing a balanced measure of performance. 

● Running Time: The computational time required 

to infer the causal graph, used to assess scalability. 

3.3 Benchmark Findings 

The results of our benchmark experiments highlight the 

superior performance of PyCD-LiNGAM, particularly in 

non-Gaussian settings. 

3.3.1 High Accuracy and Robustness 

In the synthetic data experiments, PyCD-LiNGAM 

consistently achieved a lower SHD and a higher F1-score 

compared to baseline methods like the PC algorithm. 

While the PC algorithm performed reasonably well in 

some cases, it often failed to identify a unique causal 

ordering, resulting in graphs with undirected edges. 

PyCD-LiNGAM, leveraging the non-Gaussianity 

assumption, successfully recovered the true directed 

graph with high precision and recall. For example, in a 

benchmark with 20 variables and 40 edges, the average 

SHD for DirectLiNGAM was less than half that of the PC 

algorithm, indicating a much closer approximation to the 

true causal structure. 

The bootstrap validation methods included in the 

framework confirmed that the discovered causal links 

were statistically robust. For a given dataset, we could 

identify a core set of edges that appeared in over 95% of 

the bootstrap samples, giving us high confidence in their 

validity. The estimated connection strengths for these 

stable edges also showed tight confidence intervals, 

further reinforcing the reliability of the results. 

3.3.2 Scalability 

We observed that both ICA-LiNGAM and 

DirectLiNGAM within the PyCD-LiNGAM framework 

scaled efficiently with an increasing number of variables. 

While ICA-LiNGAM showed a polynomial increase in 

computation time, as expected from the nature of the ICA 

algorithm, DirectLiNGAM, with its step-wise approach, 

demonstrated better scalability, making it a more 

practical choice for datasets with a larger number of 

variables.. When compared to other implementations, our 

framework's optimized algorithms showed a significant 

reduction in computation time, especially for medium to 

large-scale datasets (up to 50 variables), while 

maintaining high accuracy. 

3.3.3 Performance against Baseline Methods 

Table 1 summarizes the performance of PyCD-LiNGAM (using DirectLiNGAM) versus the PC algorithm on a 

synthetic dataset with 20 variables and non-Gaussian noise. 
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Algorithm Structural 

Hamming 

Distance (SHD) 

Precision Recall F1-Score 

PyCD-LiNGAM 

(DirectLiNGAM) 

4.2 0.88 0.91 0.89 

PC Algorithm 

(TETRAD) 

12.5 0.65 0.72 0.68 

These results demonstrate that PyCD-LiNGAM's ability 

to leverage non-Gaussianity provides a clear 

performance advantage in recovering the true causal 

structure. The framework’s built-in tools for assessing 

reliability and visualizing the resulting DAGs further 

enhance its utility, allowing researchers to trust and 

interpret the findings. 

DISCUSSION 

The development of the PyCD-LiNGAM framework 

represents a significant step towards making state-of-the-

art causal discovery methods accessible to a broader 

scientific community. By providing a unified, modular, 

and user-friendly platform, we aim to lower the barrier 

for researchers to apply sophisticated causal inference 

techniques in their work. 

4.1 Real-World Applications and Impact 

The insights gained from causal discovery are not merely 

theoretical; they have tangible implications for decision-

making and policy design. PyCD-LiNGAM's ability to 

reliably infer causal structures from observational data 

can be applied across a wide range of domains. 

● In econometrics, the framework can be used to 

disentangle complex relationships between economic 

indicators, helping policymakers understand the true 

drivers of inflation, employment, or market trends [23]. 

By analyzing time-series data with PyCD-LiNGAM, one 

could infer, for instance, whether a change in interest 

rates at time t−1 has a causal effect on consumer spending 

at time t. 

● In neuroscience, it can help map the intricate web 

of functional brain connectivity, revealing how different 

brain regions causally influence one another during 

cognitive tasks [22]. For example, the framework could 

be used to infer the causal flow of information from 

visual cortex to a decision-making area of the brain. 

● In genomics, researchers can use it to infer gene 

regulatory networks, identifying which genes act as 

master regulators of others, which is crucial for 

understanding disease mechanisms. The non-Gaussianity 

of gene expression data makes it a prime candidate for 

LiNGAM-based analysis. 

● In the social sciences, PyCD-LiNGAM can be 

used to analyze the causal effects of social policies or 

interventions on community outcomes [31]. For instance, 

a researcher could infer the causal links between public 

health interventions, social media usage, and health 

outcomes. 

By providing a robust tool for evidence-based scientific 

analysis, PyCD-LiNGAM empowers researchers to 

move beyond correlational analysis and generate more 

actionable, reliable insights. 

4.2 Strengths and Advantages of the Framework 

The primary strengths of PyCD-LiNGAM lie in its 

specialized focus and robust design. 

● Non-Gaussian Specificity: The framework is 

built to leverage the unique power of non-Gaussian data, 

providing a critical advantage over traditional methods 

that struggle with causal directionality. This specificity is 

its core value proposition. 

● User-Friendliness: The intuitive API and clear 

documentation make it accessible to researchers who are 

not specialists in machine learning. This is a crucial factor 

for a tool to gain widespread adoption. 

● Modular and Extensible: The modular design 

allows for easy integration of new algorithms and 

customizations, ensuring the framework can evolve with 

the field. Researchers can, for instance, swap out the 

independence test in DirectLiNGAM with a custom 

implementation. 
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● End-to-End Solution: PyCD-LiNGAM provides 

a complete pipeline from data input to graph visualization 

and statistical validation, streamlining the research 

process. 

4.3 Limitations and Future Directions 

While PyCD-LiNGAM offers a powerful solution for a 

wide range of problems, it is important to acknowledge 

its current limitations. 

● Linearity and Acyclicity Assumptions: The 

current implementations are based on the assumption of 

linearity and acyclicity [9, 28]. This means the 

framework may not perform optimally on datasets where 

the causal relationships are non-linear or where feedback 

loops exist. Non-linear relationships are common in 

biological systems and social networks. 

● Scalability for Very Large Datasets: Although 

DirectLiNGAM shows good scalability, a computational 

bottleneck can still exist for datasets with a very large 

number of variables (e.g., hundreds or thousands), which 

is common in fields like bioinformatics. 

● Limited Support for Non-linear Causal 

Discovery: While LiNGAM's core strength is its linear 

model, non-linear relationships are pervasive in real-

world systems. 

● Causal Effect Estimation: The current version of 

PyCD-LiNGAM is primarily focused on causal 

discovery (learning the graph structure) and does not yet 

include a robust module for causal effect estimation [13, 

39], which is a crucial next step for many applications. 

To address these limitations, our future development 

roadmap for PyCD-LiNGAM includes several key 

initiatives: 

● Non-linear Extensions: We plan to integrate 

algorithms that extend the LiNGAM principle to non-

linear causal discovery, such as the Additive Noise 

Model (ANM) [9, 28]. These methods would model the 

relationships as x_i=f_i(textPa_i)+e_i, where f_i is a non-

linear function. 

● Improved Scalability: Research will focus on 

developing more efficient algorithms or implementing 

parallel processing to handle very large datasets [34]. 

This could involve leveraging distributed computing 

frameworks or implementing GPU-accelerated 

algorithms. 

● Machine Learning Pipeline Integration: We will 

deepen the integration with other machine learning tools, 

making it easier to embed causal discovery into broader 

analytical workflows. This would include direct support 

for popular libraries and file formats. 

● Causal Effect Estimation Module: We plan to 

add a dedicated module for estimating causal effects once 

the graph is learned, allowing researchers to go from 

discovering the structure to quantifying its impact [12]. 

This module would implement methods like the do-

calculus [25] or front-door/back-door criteria. 

CONCLUSION 

In this paper, we have introduced PyCD-LiNGAM, a new 

open-source Python framework for causal discovery in 

non-Gaussian linear models. By implementing core 

algorithms like ICA-LiNGAM and DirectLiNGAM, and 

providing advanced features for handling latent variables 

and time series, the framework provides a robust and 

accessible platform for causal inference. Our benchmark 

experiments demonstrate its high accuracy, scalability, 

and superior performance compared to baseline methods 

in recovering true causal structures. The framework's 

modular design and built-in visualization and validation 

tools make it a powerful resource for researchers across 

diverse scientific domains. PyCD-LiNGAM represents a 

significant step toward democratizing access to state-of-

the-art causal discovery methods, empowering 

researchers to conduct more rigorous, evidence-based 

scientific analysis. We are committed to its ongoing 

development, with a clear roadmap to address current 

limitations and further expand its capabilities to include 

non-linear methods and causal effect estimation, 

solidifying its role as a foundational tool for data-driven 

research. 
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