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ABSTRACT

Background: Causal discovery from observational data is a critical challenge across scientific disciplines. While
traditional methods often rely on correlation, they fail to distinguish between causation and spurious association. The
Linear Non-Gaussian Acyclic Model (LINGAM) addresses this by leveraging the non-Gaussianity of data to uniquely
identify the causal structure, but a comprehensive, user-friendly, and open-source implementation in Python has been
lacking.

Met

hods: We introduce PyCD-LiNGAM, a dedicated Python framework designed for state-of-the-art causal discovery
using LINGAM-based methods. The library's core is built around specialized algorithms such as ICA-LINGAM and
DirectLINGAM for robustly inferring causal ordering and estimating connection strengths. The framework is
architected with a modular design, enabling researchers to easily configure parameters, integrate new methods, and
handle complex scenarios through advanced features for latent confounder detection and time-series analysis. For
validation, PyCD-LiNGAM includes tools for statistical reliability assessment via bootstrap methods and uses metrics
like the Structural Hamming Distance (SHD) to evaluate performance.

Results: Benchmark experiments conducted on both synthetic and real-world datasets demonstrate that PyCD-
LINGAM achieves high accuracy and strong scalability. The framework consistently outperforms established
baseline methods by effectively recovering the true causal graph, especially in settings with non-Gaussian error
distributions. The built-in visualization tools allow for clear and interpretable representation of the discovered
directed acyclic graphs.

Conclusion: PyCD-LINGAM serves as a foundational and accessible tool for researchers to apply advanced causal
discovery techniques. Its specialized design and robust implementation lower the barrier for integrating causal
inference into data analysis pipelines across fields such as econometrics, neuroscience, and genomics. While
currently focused on linear, acyclic models, future development will aim to extend the framework to include non-
linear methods and improve scalability, further solidifying its role in evidence-based scientific research.
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INTRODUCTION
Xand Y, are correlated does not, by itself, tell us whether

The distinction between correlation and causation is a X causes Y, Y causes X, or if both are caused by a

cornerstone of scientific inquiry [25, 29]. While
traditional statistical methods are adept at identifying
associations between variables, they often fail to reveal
the underlying causal mechanisms that drive these
relationships. For instance, observing that two variables,

https://aimjournals.com/index.php/ijidml

confounding third variable, Z. This ambiguity is a
significant limitation for fields that depend on drawing
actionable conclusions from data, such as econometrics,
neuroscience, genomics, and public policy [12, 26]. The
challenge is to move beyond mere observation and infer
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the causal structure from the data itself.

The field of causal inference has evolved significantly
over the past few decades, largely driven by the
theoretical foundations laid out by graphical models [24,
25]. These models, such as Directed Acyclic Graphs
(DAGsS), provide a powerful language for representing
causal relationships, where nodes represent variables and
directed edges represent causal links. Algorithms for
learning these structures from data have been a major
focus of research. Early approaches, often called
constraint-based methods, relied on testing for
conditional independencies in the data. The PC algorithm
[40] and its variants [32] are prime examples. These
methods are powerful but are fundamentally limited by
the existence of Markov equivalence classes, meaning
that they cannot distinguish between different causal
graphs that imply the same set of conditional
independencies. For example, the structures XtoY,
XleftarrowY, and XleftarrowZtoY are all
indistinguishable from observational data alone if the
underlying distributions are Gaussian. As a result, these
methods can only recover a partially oriented graph,
leaving many causal directions undetermined.

A breakthrough in causal discovery came with the
development of methods that leverage the properties of
non-Gaussian data. The Linear Non-Gaussian Acyclic
Model (LINGAM) is a prominent example of this
approach [35, 37]. The core insight of LINGAM is that if
the data-generating process is linear and the noise terms
are non-Gaussian, the causal direction can be uniquely
identified. Specifically, if a variable X causes a variable
Y (XtoY), the noise term of Y will be statistically
independent of X. Conversely, if we were to incorrectly
assume the reverse direction (YtoX), the noise term of X
would be a mixture of the original noise terms of both X
and Y, leading to a distribution that is dependent on the
other variable. This property, rooted in Independent
Component Analysis (ICA) [10], provides a powerful
means to break the statistical equivalency that plagues
traditional methods, enabling the discovery of a unique
causal ordering.

Despite the theoretical power and practical success of
LINGAM [19, 23, 36], a significant barrier to its
widespread adoption has been the lack of a
comprehensive, user-friendly, and well-documented
open-source framework in Python. While other libraries
exist for broader causal inference [15, 16], they often lack
the specialized implementations and advanced features
necessary for the full suite of LINGAM-based methods.
This fragmentation forces researchers to either build their
own implementations from scratch or rely on disparate
tools, hindering reproducibility and slowing down
research.

This paper introduces PyCD-LINGAM, a new Python
framework designed to provide a unified platform for
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causal discovery using LINGAM-based methods. Our
goal is to create a library that is not only powerful and
accurate but also intuitive and accessible to researchers
across various fields. PyCD-LINGAM implements
foundational algorithms like ICA-LINGAM and
DirectLINGAM, as well as more advanced methods for
handling complex scenarios such as latent confounders
and time-series data. We have integrated features for
statistical reliability assessment and graph visualization
to ensure that the results are not only robust but also
interpretable. The subsequent sections will detail the
architecture of the PyCD-LINGAM framework, present
its performance in benchmark experiments, discuss its
applications and limitations, and outline the future
directions for its development.

METHODS: The PyCD-LINGAM Framework

The PyCD-LINGAM framework is designed as a
specialized, end-to-end solution for causal discovery
using linear non-Gaussian models. Its architecture is built
to be modular and extensible, allowing for easy
customization and future development. The library
integrates seamlessly with the existing Python data
science ecosystem, utilizing popular libraries such as
NumPy for numerical operations, Pandas for data
handling, and Scikit-learn for a familiar APl [27]. The
framework’s object-oriented design makes it highly
flexible, allowing users to select different core
algorithms, independence tests, and reliability methods
and combine them into a single, cohesive workflow.

1 Core Causal Discovery Algorithms

The framework's core functionality is centered on two
foundational LINGAM algorithms, which form the basis
for most of its capabilities.

1.1 ICA-LINGAM: Independent Component Analysis
for Causal Discovery

The original LINGAM algorithm, often referred to as
ICA-LINGAM, is based on the principle of Independent
Component Analysis [10, 37]. The underlying structural
equation model (SEM) for a LINGAM is defined as:

$$\mathbf{x} = \mathbf{B}Hmathbf{x} +
\mathbf{e}$$where $\\mathbf{x} = (x\_1, \dots,
X\ nAT$ is a vector of observed variables,

$\\mathbf{B}$ is a matrix representing the causal
connections (with zeros on the diagonal), and
$\\mathbf{e} = (e\ 1, \\ldots, e\ n)"T$ is a vector of
independent, non-Gaussian error terms. The acyclicity
assumption implies that the causal graph contains no
feedback loops, which translates to the matrix
$\\mathbf{B}$ being a strictly upper-triangular matrix
after a suitable permutation of variables. This can be
rewritten  as:$$\mathbf{x} = (\mathbf{l} -
\mathbf{B})"{-1}\mathbf{e}$$
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where (mathbfl-mathbfB)—1 is a matrix representing the
full causal effects. ICA aims to find a demixing matrix
mathbfW such that mathbfs=mathbfWmathbfx, where
mathbfs is a wvector of maximally independent
components. According to the LINGAM theory, these
independent components correspond to the original non-
Gaussian error terms mathbfe. The non-Gaussianity is a
crucial assumption because the Central Limit Theorem
dictates that a sum of independent random variables tends
towards a Gaussian distribution. Therefore, a variable
that is a cause (a root node) is simply one of the
independent noise components, while an effect variable
is a linear combination of its causes' noise components
and its own noise. The non-Gaussianity of the original
noise terms ensures that the effects will be a linear
combination that is not perfectly Gaussian, thus allowing
ICA to successfully "unmix" them.

The algorithm proceeds in three main steps:

1. Centering the Data: The observed data is first
centered to have a zero mean, which is a standard
preprocessing step for ICA.

2. Independent Component Analysis: An ICA
algorithm is applied to the centered data to find a
demixing matrix mathbfW that transforms the observed
variables mathbfx into a set of independent components
mathbfs.

3. Causal Order and Matrix Estimation: The
demixing matrix mathbfW is then used to infer the causal
structure. The causal ordering is obtained by permuting
the rows and columns of mathbfW such that the resulting
matrix is lower-triangular. The causal adjacency matrix
mathbfB is then computed from this ordered matrix. The
connection strengths are directly estimated from the non-
zero entries of the resulting mathbfB matrix.

1.2 DirectLiINGAM: A More Efficient, Direct Approach

While ICA-LINGAM is theoretically sound, it can be
computationally expensive due to the full ICA
decomposition, which can be unstable for a large number
of variables. DirectLINGAM was developed as a more
direct and efficient alternative [38]. It sidesteps the full
ICA procedure by identifying the causal ordering one
variable at a time, based on a simple principle: if a
variable x_j is a root node (i.e., has no causes among the
observed variables), its residual when regressed on any
subset of other variables will be statistically independent
of the variables in that subset.

The DirectLINGAM algorithm works as follows:

1. Initialize: Start with a set of all observed
variables mathcalV.

2. Iterate: Repeat until the set mathcalV is empty.
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o For each variable x_jinmathcalV/, compute the
residual e_j by regressing x_j on all other variables in the
current set mathcalVsetminusx_j.

o Evaluate the statistical independence between
the residual e j and the corresponding variable X j.
PyCD-LiINGAM offers a choice of independence tests,
such as the widely-used kernel-based methods [28] or
more computationally efficient alternatives.

o The variable x k that vyields the most
independent residual (i.e., the one with the lowest
dependence measure) is identified as the first cause (the
root node) in the remaining causal graph.

o Add x_k to the causal ordering and remove it
from the set of variables mathcalV.

3. Finalize: Once the full causal ordering is
determined, the causal adjacency matrix mathbfB and the
connection strengths can be efficiently estimated using
ordinary least squares regression.

This step-wise procedure makes DirectLINGAM
significantly more scalable and often more robust in
practice, making it a valuable tool in the PyCD-LiINGAM
toolkit, particularly for datasets with a larger number of
variables.

2 Advanced Functionality

PyCD-LiNGAM goes beyond the basic implementations
by including advanced functionalities to handle more
complex and realistic data scenarios.

2.1 Handling Latent Confounders

The assumption that all relevant variables are observed is
often violated in real-world data. Latent confounders
(unobserved common causes) can lead to spurious
correlations and incorrect causal inferences [8, 20].
PyCD-LINGAM includes implementations of methods
designed to address this issue. For instance, the
framework incorporates an implementation of the RCD
(Repetitive Causal Discovery) algorithm [20, 21]. This
method works by first running a standard causal
discovery algorithm on the observed variables. It then
identifies residual variables that are highly correlated,
suggesting the presence of a latent confounder. The
algorithm iteratively adds a "dummy" variable to
represent the latent confounder and repeats the causal
discovery process until a stable graph is found. This
robust approach helps to disentangle the true causal links
from those induced by unobserved variables, providing a
more accurate causal structure.

2.2 Time-Series Analysis

Real-world data often comes in the form of time series,
where variables are measured over time [6, 11]. Standard
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LINGAM assumes a static, cross-sectional dataset.
PyCD-LINGAM extends the LINGAM framework to
handle temporal data by applying the principles to lagged
variables [14, 17]. This allows the framework to discover
causal relationships in dynamic systems, identifying not
only which variables cause others but also the temporal
lag of these causal influences. For a set of time series
variables X_t=(x_1,t,dots,x_n,t), the model is extended
to:

Xi, t=j =iy bijxj,t+j=1Ynk=1Y peijkxj,t-k+ei,t

where p is the maximum lag. The causal graph can then
be constructed on the variables and their lagged versions.
The framework automatically handles the creation of
lagged variables and applies the chosen LINGAM
algorithm to infer the causal relationships within this
expanded variable set. This enables the discovery of
causal links like X t—ItoY _t, which are critical for
understanding dynamic systems.

2.3 Statistical Reliability and Validation

A critical aspect of any statistical framework is the ability
to assess the reliability and significance of its findings.
PyCD-LINGAM incorporates several tools to validate
the inferred causal graphs.

2.3.1 Bootstrap Methods for Edge Stability

To assess the robustness of the discovered causal
structure, the framework includes bootstrap methods
[18]. The non-parametric bootstrap is a powerful tool for
this purpose. By resampling the data with replacement to
create multiple bootstrap samples, and then running the
causal discovery algorithm on each sample, we can
generate a distribution of possible causal graphs. This
allows us to calculate the frequency with which each
causal link is identified, providing a measure of its
statistical stability. A link that appears in a high
percentage of the bootstrap samples is considered more
reliable. The framework also provides tools to compute
confidence intervals for the estimated connection
strengths, giving researchers a comprehensive view of
the reliability of their findings.

2.3.2 Performance Metrics for Graph Comparison

To quantitatively evaluate the performance of PyCD-
LiINGAM, especially in synthetic experiments where the
ground truth is known, the framework computes standard
performance metrics. A key metric is the Structural
Hamming Distance (SHD) [30], which measures the
number of additions, deletions, or reversals of edges
needed to transform the inferred graph into the true graph.
A lower SHD indicates higher accuracy. The SHD is
particularly useful for comparing the overall structural
similarity of two graphs. Other metrics like precision (the
proportion of correctly identified edges among all
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inferred edges) and recall (the proportion of true edges
that are correctly identified) are also calculated. The F1-
score, which is the harmonic mean of precision and
recall, provides a balanced measure of performance,
especially for sparse graphs.

2.4 Data Visualization and Interpretation

Understanding a causal graph can be challenging,
especially for complex systems with many variables.
PyCD-LiINGAM includes built-in visualization tools to
generate clear, aesthetically pleasing representations of
the inferred Directed Acyclic Graphs (DAGS). These
visualizations are crucial for interpretability and for
communicating the findings to a broader audience. The
graphs can be customized to display connection
strengths, statistical significance, and other relevant
metadata, making the framework an effective tool for
both discovery and communication. The visualization
module is built on widely-used Python plotting libraries,
ensuring seamless integration and high-quality output for
publication.

RESULTS
Performance and Validation

To validate the efficacy and performance of the PyCD-
LINGAM framework, we conducted a series of
benchmark experiments using both synthetic and real-
world datasets. The goal was to assess its accuracy,
scalability, and robustness, and to compare its
performance against established baseline methods.

3.1 Experimental Setup
3.1.1 Synthetic Data Experiments

Synthetic datasets were generated to precisely control the
underlying causal structure, connection strengths, and
noise distributions. We simulated data from a variety of
linear non-Gaussian SEMs with varying numbers of
variables (from 5 to 50) and different causal graph
topologies (e.g., chain, fork, and random graphs). The
noise terms were drawn from non-Gaussian distributions
such as the exponential, uniform, and Laplace
distributions, consistent with the LINGAM assumption
[37]. For comparison, we used well-known causal
discovery algorithms, including the PC algorithm [40],
and implementations from other frameworks like
TETRAD [32] and the Causal Discovery Toolbox (CDT)
[15].

To ensure a fair comparison, we generated multiple
datasets for each configuration (e.g., number of variables,
graph density) and averaged the results over 100
repetitions. The performance of each algorithm was
evaluated based on its ability to recover the true causal
graph, as measured by SHD, precision, recall, and F1-
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score. We specifically designed experiments to test the
limits of different algorithms, for instance, by increasing
the number of variables to challenge scalability and by
introducing varying levels of non-Gaussianity to test the
robustness of the LINGAM-based methods.

3.1.2 Real-World Data Experiments

We also applied PyCD-LINGAM to real-world datasets
from various domains to demonstrate its practical utility.
These included:

° Econometric Data: A dataset of macroeconomic
indicators to infer causal relationships between market
indicators and policy decisions [23]. The challenge here
was to uncover the temporal and contemporaneous causal
links that drive economic systems.

° Neuroscience Data: A functional magnetic
resonance imaging (fMRI) dataset to analyze brain
connectivity patterns during a cognitive task [22]. The
goal was to infer the causal flow of information between
different brain regions.

° Genomic Data: A gene expression dataset to
explore the relationships among gene transcripts and
infer a potential gene regulatory network. This
application is particularly challenging due to the high
dimensionality and complexity of the data.

For these real-world applications, we could not rely on a
known ground truth. Instead, we focused on the
interpretability and plausibility of the discovered causal
graphs, often validating the findings against existing
domain knowledge or comparing them with results from
other validated methods. The built-in bootstrap methods
were especially useful here for assessing the statistical
confidence in the discovered edges.

3.2 Performance Metrics

The performance of PyCD-LINGAM and the baseline
methods was evaluated using the following metrics:

° Structural Hamming Distance (SHD): A measure
of the difference between the inferred graph and the true
graph. A lower SHD indicates higher accuracy. The SHD
is a comprehensive metric that penalizes for missing
edges, extra edges, and incorrectly oriented edges.

° Precision: The proportion of correctly identified
edges among all inferred edges. High precision indicates
that the algorithm does not produce many false positive
links.

° Recall: The proportion of correctly identified
edges among all true edges. High recall indicates that the

algorithm does not miss many true causal links.

° F1-Score: The harmonic mean of precision and
recall, providing a balanced measure of performance.

° Running Time: The computational time required
to infer the causal graph, used to assess scalability.

3.3 Benchmark Findings

The results of our benchmark experiments highlight the
superior performance of PyCD-LINGAM, particularly in
non-Gaussian settings.

3.3.1 High Accuracy and Robustness

In the synthetic data experiments, PyCD-LINGAM
consistently achieved a lower SHD and a higher F1-score
compared to baseline methods like the PC algorithm.
While the PC algorithm performed reasonably well in
some cases, it often failed to identify a unique causal
ordering, resulting in graphs with undirected edges.
PyCD-LINGAM, leveraging the non-Gaussianity
assumption, successfully recovered the true directed
graph with high precision and recall. For example, in a
benchmark with 20 variables and 40 edges, the average
SHD for DirectLiINGAM was less than half that of the PC
algorithm, indicating a much closer approximation to the
true causal structure.

The bootstrap validation methods included in the
framework confirmed that the discovered causal links
were statistically robust. For a given dataset, we could
identify a core set of edges that appeared in over 95% of
the bootstrap samples, giving us high confidence in their
validity. The estimated connection strengths for these
stable edges also showed tight confidence intervals,
further reinforcing the reliability of the results.

3.3.2 Scalability

We observed that both ICA-LINGAM and
DirectLiINGAM within the PyCD-LINGAM framework
scaled efficiently with an increasing number of variables.
While ICA-LINGAM showed a polynomial increase in
computation time, as expected from the nature of the ICA
algorithm, DirectLiINGAM, with its step-wise approach,
demonstrated better scalability, making it a more
practical choice for datasets with a larger number of
variables.. When compared to other implementations, our
framework's optimized algorithms showed a significant
reduction in computation time, especially for medium to
large-scale datasets (up to 50 variables), while
maintaining high accuracy.

3.3.3 Performance against Baseline Methods

Table 1 summarizes the performance of PyCD-LINGAM (using DirectLiNGAM) versus the PC algorithm on a

synthetic dataset with 20 variables and non-Gaussian noise.
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Algorithm Structural Precision Recall F1-Score
Hamming
Distance (SHD)
PyCD-LINGAM 4.2 0.88 0.91 0.89
(DirectLiNGAM)
PC Algorithm 12.5 0.65 0.72 0.68
(TETRAD)

These results demonstrate that PyCD-LINGAM's ability
to leverage non-Gaussianity provides a clear
performance advantage in recovering the true causal
structure. The framework’s built-in tools for assessing
reliability and visualizing the resulting DAGs further
enhance its utility, allowing researchers to trust and
interpret the findings.

DISCUSSION

The development of the PyCD-LINGAM framework
represents a significant step towards making state-of-the-
art causal discovery methods accessible to a broader
scientific community. By providing a unified, modular,
and user-friendly platform, we aim to lower the barrier
for researchers to apply sophisticated causal inference
techniques in their work.

4.1 Real-World Applications and Impact

The insights gained from causal discovery are not merely
theoretical; they have tangible implications for decision-
making and policy design. PyCD-LINGAM's ability to
reliably infer causal structures from observational data
can be applied across a wide range of domains.

° In econometrics, the framework can be used to
disentangle complex relationships between economic
indicators, helping policymakers understand the true
drivers of inflation, employment, or market trends [23].
By analyzing time-series data with PyCD-LINGAM, one
could infer, for instance, whether a change in interest
rates at time t—1 has a causal effect on consumer spending
at time t.

° In neuroscience, it can help map the intricate web
of functional brain connectivity, revealing how different
brain regions causally influence one another during
cognitive tasks [22]. For example, the framework could
be used to infer the causal flow of information from
visual cortex to a decision-making area of the brain.
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° In genomics, researchers can use it to infer gene
regulatory networks, identifying which genes act as
master regulators of others, which is crucial for
understanding disease mechanisms. The non-Gaussianity
of gene expression data makes it a prime candidate for
LiINGAM-based analysis.

° In the social sciences, PyCD-LINGAM can be
used to analyze the causal effects of social policies or
interventions on community outcomes [31]. For instance,
a researcher could infer the causal links between public
health interventions, social media usage, and health
outcomes.

By providing a robust tool for evidence-based scientific
analysis, PyCD-LINGAM empowers researchers to
move beyond correlational analysis and generate more
actionable, reliable insights.

4.2 Strengths and Advantages of the Framework

The primary strengths of PyCD-LINGAM lie in its
specialized focus and robust design.

° Non-Gaussian Specificity: The framework is
built to leverage the unique power of non-Gaussian data,
providing a critical advantage over traditional methods
that struggle with causal directionality. This specificity is
its core value proposition.

° User-Friendliness: The intuitive APl and clear
documentation make it accessible to researchers who are
not specialists in machine learning. This is a crucial factor
for a tool to gain widespread adoption.

° Modular and Extensible: The modular design
allows for easy integration of new algorithms and
customizations, ensuring the framework can evolve with
the field. Researchers can, for instance, swap out the
independence test in DirectLiNGAM with a custom
implementation.
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° End-to-End Solution: PyCD-LiNGAM provides
a complete pipeline from data input to graph visualization
and statistical validation, streamlining the research
process.

4.3 Limitations and Future Directions

While PyCD-LiINGAM offers a powerful solution for a
wide range of problems, it is important to acknowledge
its current limitations.

° Linearity and Acyclicity Assumptions: The
current implementations are based on the assumption of
linearity and acyclicity [9, 28]. This means the
framework may not perform optimally on datasets where
the causal relationships are non-linear or where feedback
loops exist. Non-linear relationships are common in
biological systems and social networks.

° Scalability for Very Large Datasets: Although
DirectLiNGAM shows good scalability, a computational
bottleneck can still exist for datasets with a very large
number of variables (e.g., hundreds or thousands), which
is common in fields like bioinformatics.

° Limited Support for Non-linear Causal
Discovery: While LINGAM's core strength is its linear
model, non-linear relationships are pervasive in real-
world systems.

° Causal Effect Estimation: The current version of
PyCD-LINGAM is primarily focused on causal
discovery (learning the graph structure) and does not yet
include a robust module for causal effect estimation [13,
39], which is a crucial next step for many applications.

To address these limitations, our future development
roadmap for PyCD-LiNGAM includes several key
initiatives:

° Non-linear Extensions: We plan to integrate
algorithms that extend the LINGAM principle to non-
linear causal discovery, such as the Additive Noise
Model (ANM) [9, 28]. These methods would model the
relationships as x_i=f_i(textPa_i)+e_i, wheref_iisanon-
linear function.

° Improved Scalability: Research will focus on
developing more efficient algorithms or implementing
parallel processing to handle very large datasets [34].
This could involve leveraging distributed computing

frameworks or  implementing  GPU-accelerated
algorithms.
° Machine Learning Pipeline Integration: We will

deepen the integration with other machine learning tools,
making it easier to embed causal discovery into broader
analytical workflows. This would include direct support
for popular libraries and file formats.
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° Causal Effect Estimation Module: We plan to
add a dedicated module for estimating causal effects once
the graph is learned, allowing researchers to go from
discovering the structure to quantifying its impact [12].
This module would implement methods like the do-
calculus [25] or front-door/back-door criteria.

CONCLUSION

In this paper, we have introduced PyCD-LINGAM, a new
open-source Python framework for causal discovery in
non-Gaussian linear models. By implementing core
algorithms like ICA-LINGAM and DirectLINGAM, and
providing advanced features for handling latent variables
and time series, the framework provides a robust and
accessible platform for causal inference. Our benchmark
experiments demonstrate its high accuracy, scalability,
and superior performance compared to baseline methods
in recovering true causal structures. The framework's
modular design and built-in visualization and validation
tools make it a powerful resource for researchers across
diverse scientific domains. PyCD-LINGAM represents a
significant step toward democratizing access to state-of-
the-art causal discovery methods, empowering
researchers to conduct more rigorous, evidence-based
scientific analysis. We are committed to its ongoing
development, with a clear roadmap to address current
limitations and further expand its capabilities to include
non-linear methods and causal effect estimation,
solidifying its role as a foundational tool for data-driven
research.
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