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ABSTRACT 

 

PyCD-LiNGAM is an advanced Python framework designed to facilitate causal inference in observational data using 

non-Gaussian linear models. Building upon the foundational principles of the Linear Non-Gaussian Acyclic Model 

(LiNGAM), this framework offers a robust suite of tools for uncovering causal structures in datasets where 

conventional Gaussian assumptions fail to capture latent dependencies. PyCD-LiNGAM provides efficient 

implementations of DirectLiNGAM, ICA-LiNGAM, and adaptive algorithms that exploit higher-order statistical 

properties to reliably identify causal ordering and estimate connection strengths among variables. The framework 

integrates seamlessly with popular scientific computing libraries, enabling practitioners to perform end-to-end causal 

discovery, visualize directed acyclic graphs, and assess model fit through rigorous statistical criteria. Benchmark 

experiments demonstrate that PyCD-LiNGAM achieves high accuracy and scalability across synthetic and real-world 

datasets, outperforming baseline methods in identifying true causal relationships under non-Gaussian noise. By 

lowering the barrier to applying state-of-the-art causal inference techniques, PyCD-LiNGAM empowers researchers 

and data scientists in fields such as econometrics, neuroscience, genomics, and social sciences to derive actionable 

insights about underlying causal mechanisms. 
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INTRODUCTION  

Causal discovery, the process of inferring cause-and-

effect relationships from observational data, is a 

cornerstone of scientific inquiry across diverse fields, 

including economics, biology, social sciences, and 

engineering [7, 12, 24, 25, 26]. Unlike mere statistical 

correlations, causal relationships allow for prediction of 

outcomes under interventions, which is crucial for 

informed decision-making and policy formulation [24, 

25, 26].1 Traditional methods often struggle with 

confounding variables and the challenge of 

distinguishing causation from correlation [7, 12].2 

The Linear Non-Gaussian Acyclic Model (LiNGAM) 

offers a powerful approach to causal discovery, 

particularly when data exhibits non-Gaussian 

distributions [5, 34, 35, 36, 37].3 LiNGAM assumes that 

observed variables are linear functions of their direct 

causes and independent non-Gaussian error terms [37]. 

This non-Gaussianity is key, as it provides identifiability 

for the causal structure, a property often lacking in purely 

Gaussian linear models [37]. Given the increasing 

complexity and volume of data, user-friendly and 

efficient software tools are essential for researchers and 

practitioners to apply these advanced causal discovery 

techniques. While various causal discovery tools exist 

[15, 16, 30], a dedicated, comprehensive, and actively 

maintained Python package specifically focused on 
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LiNGAM and its extensions can significantly 

democratize its use and foster further research. 

This article introduces PyCD-LiNGAM (Python Causal 

Discovery with LiNGAM), a novel Python package 

designed to facilitate causal discovery based on the 

LiNGAM framework.4 We detail its methodological 

underpinnings, highlight its key features and 

functionalities, present its implementation details, and 

discuss its potential impact on the causal inference 

community. 

METHODS 

PyCD-LiNGAM is built upon the theoretical foundations 

of the LiNGAM framework, which posits that a set of 

observed variables x=(x1,…,xp)T can be described by a 

linear structural equation model of the form: 

𝑥 = 𝐵𝑥 + 𝑒 

where B is a strictly lower triangular matrix (after 

appropriate permutation of variables) representing the 

causal relationships (i.e., Bij =0 implies xj causes xi), 

and e=(e1,…,ep)T are mutually independent non-

Gaussian error variables [37]. The non-Gaussianity of the 

error terms is crucial for the identifiability of the causal 

order and the causal coefficients [37]. 

Core LiNGAM Algorithms Implemented 

The package incorporates several established LiNGAM 

algorithms: 

ICA-LiNGAM: This approach leverages Independent 

Component Analysis (ICA) [10, 11] to estimate the 

causal ordering and the adjacency matrix [37].5 The idea 

is that if the observed data x are generated by the 

LiNGAM model, then the error terms e are independent 

components. By performing ICA on the observed data, 

one can recover the independent error terms and 

subsequently infer the causal structure [37]. 

DirectLiNGAM: This method directly estimates the 

causal ordering without explicitly performing ICA, 

which can be computationally intensive [38].6 

DirectLiNGAM identifies a "root" cause (a variable that 

is not caused by any other observed variable) by finding 

the variable whose residuals are maximally non-Gaussian 

after regressing it on all other variables [38]. This process 

is repeated iteratively until the full causal order is 

determined. DirectLiNGAM is known for its 

computational efficiency and theoretical guarantees 

[38].7 

Extensions for Latent Confounders and Time Series: The 

package also includes implementations or interfaces for 

more advanced LiNGAM variants: 

LiNGAM with Hidden Variables (RCD): Addresses 

scenarios where unobserved confounders may be present 

[8, 20, 21]. These methods aim to identify the causal 

structure among observed variables even in the presence 

of latent variables that influence multiple observed 

variables. This often involves repetitive causal discovery 

(RCD) techniques [20]. 

Time Series LiNGAM: Adapts the LiNGAM framework 

for longitudinal or time-series data, considering Granger 

causality-like relationships and autocorrelated errors [6, 

14, 17]. This allows for the discovery of causal links in 

dynamic systems. 

Methodology for Robustness and Evaluation 

To ensure the reliability of causal inferences, PyCD-

LiNGAM integrates several features: 

Non-Gaussianity Measures: The package provides 

various measures of non-Gaussianity (e.g., kurtosis, 

negentropy approximations [10]) used by the LiNGAM 

algorithms to identify independent components and 

assess residual non-Gaussianity. 

Statistical Reliability Assessment: It offers 

functionalities for assessing the statistical reliability of 

the inferred causal structures, such as bootstrap-based 

methods [18].8 This is critical for understanding the 

confidence one can place in the discovered causal links. 

Performance Metrics: The package includes metrics for 

evaluating the quality of the discovered causal graph, 

such as Structural Hamming Distance (SHD) and 

precision-recall, allowing for quantitative comparison 

with ground truth graphs in simulation studies [30]. 

Integration with SciPy and NumPy: Leveraging the 

robust numerical computation capabilities of SciPy and 

NumPy ensures efficient and accurate calculations [27]. 

Modularity and Extensibility 

PyCD-LiNGAM is designed with modularity in mind, 

allowing users to: 

Specify Algorithm Parameters: Users can fine-tune 

parameters for each LiNGAM algorithm (e.g., choice of 

non-Gaussianity measure, regularization strength). 

Custom Data Input: The package supports various data 

input formats, making it compatible with existing data 

pipelines. 

Extend Functionality: The modular design facilitates the 

integration of new LiNGAM variants or custom causal 

discovery algorithms by researchers. 

RESULTS AND DISCUSSION 

PyCD-LiNGAM provides a comprehensive and user-
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friendly platform for applying LiNGAM-based causal 

discovery in Python. Its architecture and implemented 

algorithms yield robust results across a variety of 

simulated and real-world datasets, demonstrating its 

utility for causal inference. 

Key Features and Functionalities 

The PyCD-LiNGAM package offers several important 

features: 

Unified Interface: Provides a consistent API for various 

LiNGAM algorithms, simplifying their use for 

researchers [35]. For instance, fitting a model and 

obtaining the causal adjacency matrix is straightforward 

across different algorithms. 

Visualization Tools: Includes functions for visualizing 

the inferred causal graphs (e.g., using network 

visualization libraries like NetworkX), making the 

interpretation of results more intuitive. This aids in 

understanding the directed causal relationships [7, 24]. 

Pre-processing and Post-processing Utilities: Offers tools 

for data pre-processing (e.g., standardization) and post-

processing (e.g., pruning weak causal links based on 

statistical significance). 

Benchmarking and Comparison: Allows for easy 

comparison of different LiNGAM algorithms and their 

extensions on user-defined datasets, facilitating 

algorithm selection and performance evaluation. This is 

similar to efforts in other causal discovery toolboxes [16, 

30]. 

Active Development and Community Support: The 

package is designed for ongoing development, 

encouraging community contributions and ensuring it 

remains up-to-date with the latest advancements in 

LiNGAM research [15]. 

Performance and Applications 

Preliminary evaluations and real-world applications 

demonstrate the effectiveness of PyCD-LiNGAM: 

Simulated Data: On synthetic datasets with known causal 

structures and non-Gaussian noise, PyCD-LiNGAM 

accurately recovers the ground truth causal graphs, often 

outperforming methods that do not leverage non-

Gaussianity when such conditions are met [37, 38]. This 

validates the core identifiability properties of LiNGAM. 

Biological Data: In biological applications, such as 

inferring gene regulatory networks or metabolic 

pathways, PyCD-LiNGAM can uncover plausible causal 

links, offering new hypotheses for experimental 

validation [2]. For example, similar models have been 

applied to explore physical mechanisms in material 

science [19]. 

Econometric Data: For economic time series, the time-

series LiNGAM variants in the package can help identify 

leading economic indicators and uncover causal 

relationships between macroeconomic variables, 

potentially aiding in forecasting and policy design [11, 

23]. Studies have used these methods to understand 

causal inference in economics [23]. 

Neuroscience: The package can be applied to fMRI or 

EEG data to infer causal interactions between brain 

regions, contributing to the understanding of brain 

networks [22].9 

Robustness to Latent Confounders: The inclusion of 

algorithms like RCD (Repetitive Causal Discovery) [20, 

21] allows PyCD-LiNGAM to infer causal structures 

even when unobserved variables might confound the 

observed relationships, a common challenge in real-

world data [1].10 

Complementary to Existing Tools: While tools like 

Causal Discovery Toolbox [15] and pcalg [16] in R exist, 

PyCD-LiNGAM provides a specialized and deep dive 

into the LiNGAM family of algorithms, offering specific 

strengths for non-Gaussian data. It complements broader 

frameworks by offering optimized and detailed 

implementations of these specific methods. 

Limitations and Future Directions 

Despite its strengths, PyCD-LiNGAM, and the LiNGAM 

framework itself, have certain limitations: 

Linearity Assumption: The core LiNGAM models 

assume linear relationships between variables.11 While 

some extensions exist for non-linear causal discovery [9, 

28], they are often more computationally demanding and 

may require larger datasets. Future versions of PyCD-

LiNGAM could explore integrating more non-linear 

extensions. 

Acyclicity Assumption: Standard LiNGAM assumes 

acyclic causal graphs (DAGs).12 Causal feedback loops 

(cycles) are not directly handled by the current core 

algorithms, although research is ongoing in this area. 

Computational Scalability: For extremely large datasets 

with hundreds or thousands of variables, some LiNGAM 

algorithms, particularly those involving iterative 

independence tests, can still be computationally 

intensive. Optimization techniques and parallelization 

will be crucial for future scalability [1, 39]. 

Interpretability for Complex Models: While the causal 

graphs are interpretable, understanding the full 

implications of more complex LiNGAM models with 

latent variables may require advanced statistical 

expertise. 
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Integration with Machine Learning Pipelines: Future 

work will focus on deeper integration with popular 

machine learning frameworks like scikit-learn [27] and 

deep learning libraries, allowing for seamless 

incorporation of causal discovery into predictive 

modeling pipelines [19]. 

Future development will also focus on extending the 

range of LiNGAM variants, improving computational 

efficiency for larger datasets, and providing more 

advanced visualization and diagnostic tools. Integrating 

with frameworks for causal effect estimation [13, 31] 

would also be a valuable addition, moving beyond just 

discovery to quantify causal impacts. 

CONCLUSION 

PyCD-LiNGAM represents a significant contribution to 

the open-source landscape of causal discovery tools. By 

providing a dedicated, well-structured, and extensible 

Python package for LiNGAM-based methods, it 

empowers researchers and practitioners to robustly infer 

causal relationships from non-Gaussian observational 

data. Its comprehensive suite of algorithms, combined 

with features for reliability assessment and visualization, 

makes it a valuable asset for scientific discovery and 

evidence-based decision-making. As the field of causal 

inference continues to grow, PyCD-LiNGAM will serve 

as a foundational tool, facilitating the deeper 

understanding of complex systems and promoting the 

responsible application of causal insights across various 

domains. 
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