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ABSTRACT 

 

The rapid advancements in quantum computing have opened new avenues for enhancing classical machine learning 

paradigms, particularly in the realm of image classification. Traditional Deep Convolutional Neural Networks 

(DCNNs) have achieved remarkable success, yet they face challenges related to computational intensity and the need 

for vast datasets [4, 19, 31]. Quanvolutional Neural Networks (QNNs) emerge as a promising hybrid quantum-

classical approach that integrates quantum circuits directly into the feature extraction process of convolutional layers. 

This article explores the fundamental characteristics and operational advantages of QNNs, focusing on how their 

unique quantum-enhanced feature maps contribute to improved image classification performance. We delve into the 

architecture of quanvolutional layers, the mechanisms of data encoding, and the potential for quantum advantage in 

feature learning. By synthesizing recent research, we demonstrate the theoretical underpinnings and observed benefits 

of QNNs in extracting richer, more discriminative features, potentially leading to higher accuracy and efficiency, 

especially in the Noisy Intermediate-Scale Quantum (NISQ) era [22]. Challenges such as data encoding complexity, 

parameter optimization, and hardware limitations are also discussed, alongside future directions for scalable and 

robust QNN implementations. 
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INTRODUCTION  

Image classification, a cornerstone of computer vision, 

has undergone a revolutionary transformation with the 

advent of deep learning, particularly Convolutional 

Neural Networks (CNNs) [4, 19]. From early 

architectures like LeNet [18] to pioneering works like 

AlexNet [17] and subsequent innovations such as 

VGGNet [27], ResNet [10], and Inception [28], CNNs 

have consistently pushed the boundaries of accuracy in 

tasks ranging from object recognition to medical imaging 

[29]. These classical models excel at automatically 

learning hierarchical feature representations from raw 

pixel data, mitigating the need for manual feature 

engineering [31]. However, the continued pursuit of 

higher accuracy often necessitates deeper and wider 

networks, leading to significant computational demands 

and large model parameters, which can be a bottleneck 

for deployment on resource-constrained devices or for 

extremely large datasets [4]. 

Concurrently, the field of quantum computing has 

progressed significantly, moving beyond theoretical 
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constructs to the realization of Noisy Intermediate-Scale 

Quantum (NISQ) devices [22]. This era, characterized by 

quantum processors with a limited number of qubits and 

imperfect coherence, presents both opportunities and 

challenges for practical applications [12]. One of the 

most compelling intersections of quantum computing and 

artificial intelligence is quantum machine learning 

(QML), which seeks to leverage quantum phenomena 

such as superposition, entanglement, and interference to 

enhance machine learning algorithms [2, 24, 25]. 

Quantum Neural Networks (QNNs), in particular, have 

emerged as a focal point within QML, aiming to integrate 

quantum computations into neural network architectures 

[1, 14]. 

Among various QNN paradigms, Quanvolutional Neural 

Networks (QNNs) represent a specific hybrid quantum-

classical approach that marries the strengths of classical 

CNNs with the potential computational advantages of 

quantum circuits [11]. The core idea behind QNNs, as 

introduced by Henderson et al. [11], is to replace or 

augment the classical convolutional layers with 

"quanvolutional" layers. These layers utilize a 

parameterized quantum circuit (PQC) to perform feature 

extraction on small image patches, transforming classical 

pixel data into a quantum-enhanced feature map. This 

approach is particularly appealing because it attempts to 

leverage quantum parallelism and entanglement for more 

efficient or richer feature learning, potentially improving 

classification accuracy or reducing the number of 

trainable parameters compared to purely classical 

counterparts [11, 13]. 

The rationale for exploring QNNs in image classification 

stems from the hypothesis that quantum circuits can 

perform non-linear transformations and entangle features 

in ways that are difficult or inefficient for classical 

algorithms [1, 26]. This could lead to the discovery of 

more robust and discriminative features, especially in 

complex datasets where classical methods might struggle 

with feature engineering or generalization. Furthermore, 

QNNs align well with the current capabilities of NISQ 

devices by focusing on small, localized quantum 

operations, making them potentially more amenable to 

near-term implementation than fully quantum deep 

learning models [32]. 

This article aims to provide a comprehensive 

examination of the features of quanvolutional neural 

networks for improved image classification. We will 

explore their architectural components, the mechanisms 

by which they process and transform image data, and the 

theoretical and empirical benefits observed in recent 

studies. We will also address the inherent challenges in 

their design and implementation, particularly concerning 

data encoding, parameter optimization, and the 

limitations imposed by current quantum hardware. 

Ultimately, this review seeks to illuminate the potential 

of QNNs as a powerful tool in the evolving landscape of 

quantum-enhanced artificial intelligence. 

METHODS 

Quanvolutional Neural Networks (QNNs) represent a 

class of hybrid quantum-classical models designed to 

leverage the strengths of both quantum computing and 

classical deep learning for tasks like image classification. 

The methodology underpinning QNNs centers on 

integrating quantum circuits into the traditional 

convolutional neural network architecture [11, 20]. 

1. Architectural Foundation: Hybrid Quantum-Classical 

Design 

The fundamental structure of a QNN is a hybrid model, 

combining classical and quantum components [20]. This 

hybridity is crucial for operation within the Noisy 

Intermediate-Scale Quantum (NISQ) era [22], where full-

scale quantum computers are not yet available. A typical 

QNN consists of: 

• Quantum Convolutional Layers (Quanvolutional 

Layers): These are the core innovation of QNNs. Instead 

of classical filters performing convolutions, image 

patches are fed into a parameterized quantum circuit 

(PQC). The quantum circuit processes the data and 

outputs a set of values, which then form the feature map 

[11]. 

• Classical Neural Network Layers: Following the 

quantum convolutional layers, conventional classical 

layers (e.g., pooling layers, additional classical 

convolutional layers, fully connected layers, and a 

softmax output layer) are used for further processing, 

classification, and output generation [11, 13, 20]. This 

allows the QNN to benefit from the well-established 

optimization and training techniques of classical deep 

learning. 

2. Data Encoding for Quantum Processing 

A critical step in QNNs is encoding classical image data 

into a quantum state that can be processed by the quantum 

circuit [33]. Unlike classical bits, qubits can represent 

information in superposition, offering a potentially richer 

representation [2]. Several methods exist for encoding 

classical data into quantum states: 

• Amplitude Encoding: This method encodes the 

pixel values into the amplitudes of a quantum state. For 

an image patch of N pixels, log2N qubits are required 

[11]. While informationally dense, preparing such states 

accurately can be complex, often requiring sophisticated 

quantum state preparation algorithms [3, 9]. Variational 

approaches to encoding are also being explored to 

enhance image encoding [21]. 

• Angle Encoding (Feature Map): This involves 
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mapping pixel values to the rotation angles of single-

qubit gates (e.g., RX, RY, RZ) or as parameters for 

entangling gates. This is a common strategy in variational 

quantum algorithms due to its relative ease of 

implementation on current hardware [26]. 

• Basis Encoding: Pixel values are mapped 

directly to the computational basis states of qubits. This 

is straightforward but less dense than amplitude 

encoding, requiring more qubits for the same amount of 

data [33]. 

For Quanvolutional layers, a small image patch (e.g., 2×2 

pixels) is typically chosen as input to the quantum circuit. 

The pixel values from this patch are encoded into the 

qubits. The choice of encoding strategy significantly 

impacts the performance and feasibility of the QNN [21, 

33]. The concept of Quantum Random Access Memory 

(QRAM) could theoretically allow for efficient loading 

of large datasets, but its practical implementation is still 

a significant challenge [7, 8]. 

3. The Quanvolutional Process 

The "quanvolution" operation mimics the receptive field 

concept of classical convolutions. For each small patch 

of the input image: 

1. Patch Extraction: A small region (e.g., 2×2 

pixels) of the input image is selected, similar to a classical 

convolutional filter's receptive field [11]. 

2. Quantum Circuit Execution: The pixel values 

from this patch are encoded into the input qubits of a 

small, fixed quantum circuit. This circuit typically 

consists of a series of single-qubit rotations and 

entangling gates (e.g., CNOT gates) [11, 13, 32]. The 

quantum circuit itself is often parameterized, meaning the 

angles of some gates can be optimized during training 

[26]. 

3. Measurement and Feature Extraction: After the 

quantum circuit execution, measurements are performed 

on the qubits. The outcomes of these measurements (e.g., 

expectation values of Pauli operators or probabilities of 

certain bitstring outcomes) form the quantum-enhanced 

features for that specific patch [11, 13]. These measured 

values are then fed as input to the subsequent classical 

layers. 

4. Sliding Window: This process is repeated across 

the entire image using a sliding window approach, 

generating a feature map analogous to the output of a 

classical convolutional layer [11]. 

The quantum circuit itself acts as a non-linear feature 

extractor. The expressibility and entangling capabilities 

of these parameterized quantum circuits are crucial for 

their ability to learn complex patterns and potentially lead 

to better feature representations than classical methods 

[26]. 

4. Training and Optimization 

Training a QNN is a hybrid process, typically involving 

classical optimization algorithms. The parameters to be 

optimized include: 

• Quantum Circuit Parameters: The variational 

parameters within the quantum convolutional layers. 

• Classical Neural Network Parameters: The 

weights and biases of the classical layers. 

The overall training loop is often performed classically 

using gradient-based optimization algorithms, such as 

stochastic gradient descent (SGD) or its variants [15]. 

Calculating gradients for quantum circuits involves 

techniques like the parameter-shift rule, which allows for 

the estimation of derivatives by querying the quantum 

circuit multiple times [34]. 

The objective function (loss function) is typically 

calculated classically based on the output of the hybrid 

network, and the gradients are backpropagated through 

both the classical and quantum layers. This iterative 

process aims to minimize the loss and improve 

classification accuracy. Quantum neural architecture 

search (QNAS) is also an emerging field that explores 

automated design of optimal quantum circuits within 

these networks [6, 37]. 

5. Datasets 

QNNs have been applied to various image datasets to 

demonstrate their capabilities. Common benchmark 

datasets in image classification include: 

• MNIST: A dataset of handwritten digits, often 

used for initial proof-of-concept due to its simplicity [11]. 

• Fashion-MNIST: A dataset of Zalando's fashion 

article images, posing a slightly more complex challenge 

than MNIST [36]. 

• CIFAR-10/100: Datasets of colored natural 

images, significantly more challenging than MNIST due 

to higher dimensionality and more complex features. 

For quantum processing, images are often downscaled or 

pre-processed to fit the limited qubit count of current 

NISQ devices [11, 13]. For example, a 28×28 MNIST 

image might be downscaled to 4×4 or 8×8 before patches 

are extracted for quantum processing. 

By combining the powerful feature learning capabilities 

of quantum circuits with the robust classification power 

of classical neural networks, QNNs offer a promising 

avenue for advancing image classification in the quantum 
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era. 

RESULTS 

The integration of quantum convolutional layers within 

hybrid neural network architectures has demonstrated 

several promising results and theoretical benefits for 

image classification, particularly in the context of 

enhanced feature extraction and improved performance 

metrics. While the field is still nascent and primarily 

operates within the NISQ era, existing studies provide 

compelling evidence of QNNs' potential. 

1. Enhanced Feature Extraction and Discriminative 

Power 

A primary theoretical advantage of Quanvolutional 

Neural Networks stems from their ability to leverage 

quantum mechanical phenomena like superposition and 

entanglement for feature extraction [11]. Quantum 

circuits, especially parameterized quantum circuits 

(PQCs), can perform highly non-linear transformations 

and entangle features in ways that are computationally 

expensive or impossible for classical algorithms [1, 26]. 

• Richer Feature Spaces: By mapping classical 

pixel data to quantum states and processing them through 

quantum circuits, QNNs can potentially project the input 

data into a higher-dimensional or more complex feature 

space [11, 13]. This quantum-enhanced feature mapping 

can lead to the discovery of more discriminative patterns 

and relationships within the image data that might be 

subtle or difficult for classical CNNs to capture [21]. 

• Improved Representational Capacity: The 

entangling gates within the quantum convolutional layers 

can create intricate correlations between input features, 

which can lead to a more compact and expressive 

representation of the image data [26]. This enhanced 

expressibility can translate into better performance in 

distinguishing between different classes, even with a 

limited number of parameters in the quantum part [13]. 

2. Performance Improvements in Image Classification 

Several studies have reported performance improvements 

or comparable accuracy with classical models, especially 

on smaller datasets or in specific contexts. 

• MNIST and Fashion-MNIST: Henderson et al. 

[11], who first proposed Quanvolutional Neural 

Networks, demonstrated that a hybrid QNN could 

achieve comparable or even superior performance to 

purely classical CNNs on the MNIST and Fashion-

MNIST [36] datasets with fewer trainable parameters in 

the quantum part. This suggests that the quantum layers 

are efficient at extracting meaningful features. 

• Classical Data Classification: Hur et al. [13] 

further explored the application of Quantum 

Convolutional Neural Networks for classical data 

classification, showing that QCNNs can effectively 

classify classical images. Their work contributes to the 

growing evidence that QCNNs are viable for such tasks. 

• High Energy Physics Data: QCNNs have also 

been applied to more specialized datasets, such as high 

energy physics data, showcasing their versatility beyond 

standard image benchmarks [5]. Chen et al. [5] 

demonstrated the application of quantum convolutional 

neural networks for this domain, highlighting their 

potential for complex scientific data analysis. 

• Efficiency and Parameter Reduction: While the 

overall network might still be hybrid, the quantum part 

can potentially extract rich features using fewer 

parameters than a comparable classical layer, which 

could be beneficial for model compression or efficiency 

[11, 35]. Wu and Li [35] also explored scalable quantum 

convolutional neural networks for edge computing, 

which hints at potential efficiency gains. 

3. Adaptability to NISQ Devices 

A significant result for QNNs is their relative suitability 

for the current NISQ era [22]. 

• Local Operations: The quanvolutional approach 

relies on applying small quantum circuits to localized 

image patches, rather than requiring a large number of 

qubits for the entire image simultaneously [11, 32]. This 

localized nature makes QNNs more amenable to 

implementation on current quantum hardware, which has 

limited qubit counts and coherence times. Wei et al. [32] 

specifically demonstrated a quantum convolutional 

neural network on NISQ devices. 

• Hybrid Training: The hybrid quantum-classical 

training framework allows for the computationally 

intensive parts of the optimization (like backpropagation 

through classical layers) to be handled by classical 

processors, while the quantum processor focuses only on 

the quantum feature extraction [20]. This practical 

partitioning is essential for current hardware limitations. 

4. Variational Approaches and Architecture Search 

Results also indicate a growing interest in optimizing 

QNN architectures and parameters: 

• Variational Quanvolutional NNs: Researchers 

are exploring variational quanvolutional neural networks 

with enhanced image encoding strategies to further 

improve performance [21]. This involves optimizing the 

quantum circuit's parameters through variational 

methods. 

• Differentiable Quantum Architecture Search: 
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The development of differentiable quantum architecture 

search methods [37] for QNNs indicates a move towards 

automating the design of optimal quantum layers, 

potentially leading to more efficient and effective 

network configurations. 

In summary, the results from various studies suggest that 

QNNs offer a promising path for enhancing image 

classification. Their ability to leverage quantum 

properties for superior feature extraction, coupled with 

their adaptability to NISQ hardware, positions them as a 

key area of research in quantum machine learning, 

striving to achieve quantum advantage in real-world 

applications [23]. 

DISCUSSION 

The results presented indicate that Quanvolutional 

Neural Networks (QNNs) hold significant promise for 

advancing image classification by integrating quantum 

processing into the feature extraction pipeline. This 

hybrid approach capitalizes on the strengths of both 

classical and quantum computing, aiming to overcome 

some limitations of traditional deep learning models. 

1. Quantum Advantage in Feature Learning 

The core hypothesis underpinning QNNs is that quantum 

circuits can perform operations that are classically 

difficult or inefficient, potentially leading to a "quantum 

advantage" in feature learning [11, 13]. The ability of 

parameterized quantum circuits (PQCs) to create highly 

entangled states and perform complex non-linear 

transformations [26] is a key factor. This allows QNNs to 

potentially discover more abstract and robust features 

from image data compared to classical convolutional 

filters. Such features could lead to improved 

classification accuracy, especially for complex or noisy 

datasets where subtle distinctions are crucial. The 

concept of quantum advantage in machine learning is an 

active area of debate [23], but the empirical results on 

smaller datasets like MNIST and Fashion-MNIST [11] 

offer encouraging preliminary evidence that QNNs can 

indeed extract effective features with potentially fewer 

parameters in the quantum layer. 

2. Practicality in the NISQ Era 

QNNs are particularly well-suited for the current Noisy 

Intermediate-Scale Quantum (NISQ) era [22]. By 

focusing on small, localized quantum operations on 

image patches, they circumvent the need for large-scale, 

fault-tolerant quantum computers that are still decades 

away. The hybrid architecture allows the quantum 

processor to handle the quantum-specific feature 

mapping, while classical processors manage the larger 

portions of the network and the overall training process 

[20, 32]. This pragmatic design makes QNNs one of the 

more immediately viable quantum machine learning 

applications on existing and near-term quantum 

hardware. 

3. Challenges and Limitations 

Despite their promise, QNNs face several significant 

challenges that require ongoing research: 

• Data Encoding Complexity: Efficiently and 

faithfully encoding classical image data into quantum 

states remains a non-trivial task [33]. Methods like 

amplitude encoding are informationally dense but can be 

computationally expensive for state preparation, 

especially for larger image patches or higher-resolution 

images [3]. Angle encoding is more practical for current 

hardware but might limit the amount of information that 

can be encoded per qubit [21]. The absence of practical 

Quantum Random Access Memory (QRAM) [7, 8] 

further complicates large-scale data input. 

• Hardware Limitations: Current NISQ devices 

have limited qubit counts, short coherence times, and 

high error rates [22]. These limitations constrain the size 

and depth of the quantum circuits that can be 

implemented reliably within the quanvolutional layers. 

While QNNs are designed to be NISQ-friendly, scaling 

them to process high-resolution images or more complex 

feature maps still presents a significant hurdle. Noise in 

quantum operations can degrade the quality of the 

extracted features and impact the overall model 

performance. 

• Trainability and Optimization: Training hybrid 

quantum-classical models can be challenging. While 

classical optimizers are used, calculating gradients for 

quantum circuits (e.g., using the parameter-shift rule 

[34]) requires multiple quantum circuit executions, which 

can be time-consuming on quantum hardware. 

Furthermore, the loss landscapes of variational quantum 

algorithms can be complex, prone to barren plateaus, 

making effective optimization difficult [26]. Research 

into advanced optimization algorithms adapted for 

quantum circuits [15] and differentiable quantum 

architecture search [37] is crucial. 

• Comparison to Classical Baselines: While QNNs 

show promising results on certain datasets, establishing a 

clear and consistent "quantum advantage" over highly 

optimized classical CNNs (e.g., ResNet [10], Inception 

[28], VGGNet [27], AlexNet [17], LeNet [18]) on large, 

complex datasets like ImageNet [17] remains an open 

challenge. Classical deep learning in computer vision has 

seen immense progress [4, 19, 31], and current QNNs are 

often compared to simpler classical models or 

downscaled versions of complex datasets to fit hardware 

constraints. 

4. Future Directions 

https://aimjournals.com/index.php/ijidml
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Future research in QNNs will likely focus on several key 

areas: 

• Scalability: Developing techniques to scale 

QNNs for larger images and more complex datasets, 

possibly through improved data encoding, quantum 

memory techniques, or more efficient hybrid 

architectures [35]. 

• Robustness to Noise: Designing quantum circuits 

and training protocols that are more robust to noise 

inherent in NISQ devices, perhaps through error 

mitigation techniques or noise-aware training. 

• Theoretical Foundations: Deepening the 

theoretical understanding of why quantum circuits might 

provide an advantage for feature learning, including 

rigorous analysis of their expressibility and entanglement 

properties [26]. 

• Novel Quantum Architectures: Exploring new 

quantum circuit designs for the quanvolutional layer, 

potentially drawing inspiration from advanced quantum 

machine learning concepts [2, 12, 14, 25, 30]. Automated 

quantum neural architecture search methods could play a 

significant role here [6, 37]. 

• Applications beyond Benchmarks: Applying 

QNNs to real-world, complex problems in areas like 

medical imaging, remote sensing, and industrial quality 

control, where traditional methods might encounter 

limitations [29]. 

• Variational Hybrid Approaches: Further 

development of variational quanvolutional neural 

networks [21] to allow for more flexible and adaptive 

feature extraction. 

In conclusion, QNNs represent a compelling direction in 

quantum machine learning for image classification. 

While current hardware limitations and theoretical 

challenges persist, their ability to introduce quantum-

enhanced feature learning into established CNN 

architectures positions them as a critical area of research 

with the potential to yield significant breakthroughs as 

quantum computing technology matures. 

CONCLUSION 

Quanvolutional Neural Networks (QNNs) represent a 

significant step forward in the burgeoning field of 

quantum machine learning, offering a unique hybrid 

approach to image classification. By embedding 

parameterized quantum circuits directly into the 

convolutional layers, QNNs leverage the power of 

quantum mechanics—specifically superposition and 

entanglement—to perform sophisticated feature 

extraction [11]. This enables the creation of quantum-

enhanced feature maps that potentially offer richer and 

more discriminative representations of image data, 

leading to improved classification accuracy and 

efficiency [13]. 

The architectural design of QNNs, which integrates 

quantum convolutional layers with classical neural 

network components, makes them particularly suitable 

for the current Noisy Intermediate-Scale Quantum 

(NISQ) era. This hybridity allows QNNs to overcome 

some of the immediate limitations of quantum hardware 

by distributing the computational load between quantum 

and classical processors [20, 32]. Early empirical results 

on benchmark datasets like MNIST and Fashion-MNIST 

have demonstrated their competitive performance against 

classical counterparts, sometimes with fewer trainable 

parameters in the quantum section [11]. 

However, the path to widespread adoption and a 

definitive quantum advantage is still paved with 

challenges. Key areas requiring further research include 

developing more efficient and scalable data encoding 

strategies for classical images into quantum states [33], 

mitigating the impact of noise and errors inherent in 

current quantum hardware [22], and devising robust 

optimization techniques for the complex loss landscapes 

of hybrid models [15, 26]. Future efforts will also focus 

on expanding the theoretical understanding of QNNs' 

capabilities, exploring novel quantum circuit 

architectures through methods like quantum neural 

architecture search [6, 37], and validating their 

performance on larger, more complex real-world 

datasets. 

Ultimately, Quanvolutional Neural Networks stand as a 

testament to the transformative potential of quantum 

computing in artificial intelligence. As quantum 

technology continues to mature, QNNs are poised to play 

an increasingly vital role in pushing the boundaries of 

image classification, unlocking new capabilities and 

efficiencies that were previously unattainable with purely 

classical methods. 
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