eISSN: 3087-4262

Volume. 02, Issue. 05, pp. 01-07, May 2025

LEVERAGING MACHINE LEARNING TO IDENTIFY MATERNAL RISK FACTORS FOR CONGENITAL HEART DISEASE IN OFFSPRING

Kartik Tandon

Department Of Computer Science And Engineering, Indian Institute Of Technology Delhi, India

Dr. Priya Menon

Department Of Pediatrics, All India Institute Of Medical Sciences (Aiims), New Delhi, India

Article received: 21/03/2025, Article Accepted: 11/04/2025, Article Published: 13/05/2025

DOI: https://doi.org/10.55640/ijidml-v02i05-01

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Congenital Heart Defects (CHDs) represent a significant global health challenge, being the most common birth anomalies. Early identification of mothers at risk of having a child with a CHD is crucial for timely intervention, improved prenatal counseling, and better neonatal outcomes. This article explores the application of machine learning (ML) methodologies to predict the risk of CHDs in offspring based on maternal characteristics and health data. We review various ML algorithms, including traditional classifiers and advanced neural networks, that have been or could be employed for this predictive task. Key aspects of data collection, preprocessing, feature engineering, and model evaluation are discussed within the context of identifying relevant maternal risk factors. By analyzing existing literature and outlining potential experimental frameworks, this study highlights the immense potential of ML in augmenting clinical decision-making, facilitating early risk stratification, and ultimately contributing to improved maternal and child health outcomes concerning CHDs.

KEYWORDS

Machine learning, Maternal risk factors, Congenital heart disease, Predictive modeling, Prenatal health, Birth defects, Healthcare analytics, Risk assessment, Data-driven prediction, Maternal-fetal medicin

INTRODUCTION

Congenital Heart Defects (CHDs) are structural abnormalities of the heart or great vessels that are present at birth, affecting approximately 1 in 100 live births globally, making them the most common type of birth defect [20]. The clinical spectrum of CHDs ranges from mild, asymptomatic conditions to severe, life-threatening anomalies requiring immediate surgical intervention [8]. Despite advancements in medical imaging and surgical techniques, CHDs remain a leading cause of infant morbidity and mortality [5, 11]. Early and accurate diagnosis of CHDs, preferably during the prenatal period, allows for appropriate planning of delivery, specialized neonatal care, and timely intervention, which significantly improves long-term outcomes for affected children [1].

Traditional methods for assessing the risk of CHDs primarily rely on family history, maternal medical conditions (e.g., diabetes, rubella infection during pregnancy), and certain genetic syndromes [7]. While these factors are important, they may not capture the full complexity of risk profiles, and a significant proportion of CHDs occur in the absence of known risk factors, rendering prediction challenging. Furthermore, the interplay between various genetic and environmental factors in the etiology of CHDs is intricate and often not fully understood [7, 16]. This complexity necessitates more sophisticated analytical tools capable of identifying subtle patterns and interactions within large datasets that might indicate an elevated risk.

In recent years, machine learning (ML) has emerged as a

powerful paradigm for pattern recognition, prediction, and decision support across various domains, particularly in healthcare [3, 4, 6]. ML algorithms possess the unique ability to learn complex relationships from data without explicit programming, making them highly suitable for tasks involving high-dimensional clinical datasets where traditional statistical methods might fall short [13, 14, 18]. The application of ML in predicting various health conditions, including heart disease in general, has shown promising results [3, 4, 6, 17, 21]. This promising trend extends to the specialized domain of congenital heart defects, where ML models can potentially process vast amounts of maternal health data, demographic information, lifestyle factors, and prenatal screening results to identify women at a higher risk of giving birth to a child with a CHD [2, 10, 19, 22].

This article aims to provide a comprehensive overview of how machine learning can be leveraged to predict women at risk of having a child with congenital heart defects. We will explore the types of data relevant for such predictions, discuss various ML algorithms applicable to this challenge, and outline a general methodological framework for developing and evaluating predictive models. By synthesizing insights from existing literature and proposing a structured approach, this work seeks to highlight the potential of ML as a transformative tool in prenatal care, leading to earlier interventions, improved counseling, and ultimately better health outcomes for children born with CHDs.

2. Materials and Methods

2.1. Data Collection and Characteristics

Predicting congenital heart defects based on maternal risk factors requires a comprehensive dataset encompassing various aspects of maternal health, lifestyle, and pregnancy history. While no specific dataset is presented in this conceptual framework, a typical dataset for such a study would include:

- Demographic Information: Maternal age, ethnicity, geographical location, socioeconomic status.
- Medical History: Pre-existing conditions (e.g., diabetes mellitus, hypertension, thyroid disorders), history of previous pregnancies and outcomes, family history of CHDs or other genetic conditions, previous exposure to teratogenic substances or medications [7, 16].
- Pregnancy-Specific Factors: Gestational age at enrollment, presence of gestational diabetes, preeclampsia, infections during pregnancy (e.g., rubella, cytomegalovirus), medication use during pregnancy, results of prenatal screening tests (e.g., NIPT, first-trimester screening biomarkers) [7, 19].

- Lifestyle Factors: Smoking status, alcohol consumption, nutritional deficiencies, exposure to environmental pollutants [7].
- Fetal Ultrasound Findings: Though often indicative of CHD, early subtle signs or even normal findings followed by later CHD diagnosis can be crucial data points for training [22].

Given the sensitive nature of health data, ethical considerations, data privacy (e.g., GDPR, HIPAA compliance), and secure data storage are paramount. Data would typically be sourced from electronic health records, specialized CHD registries, and prospective cohort studies.

2.2. Data Preprocessing

Raw clinical data is often noisy, incomplete, and inconsistent, necessitating rigorous preprocessing steps to prepare it for machine learning models:

- Handling Missing Values: Missing data points, common in clinical datasets, can be addressed using imputation techniques (e.g., mean, median, mode imputation for numerical features; most frequent category for categorical features; or more advanced methods like K-Nearest Neighbors imputation or predictive modeling) [13].
- Feature Encoding: Categorical variables (e.g., ethnicity, smoking status, specific medical conditions) need to be converted into numerical representations using techniques like one-hot encoding or label encoding.
- Feature Scaling/Normalization: Numerical features with varying scales (e.g., maternal age vs. blood glucose levels) should be scaled to a common range (e.g., min-max scaling to [0, 1] or standardization to mean 0 and standard deviation 1). This prevents features with larger numerical values from dominating the learning process, particularly for distance-based algorithms or those sensitive to feature scales.
- Outlier Detection and Treatment: Outliers, which can disproportionately influence model training, should be identified and either removed or transformed (e.g., Winsorization).
- Data Balancing: If the dataset exhibits class imbalance (i.e., significantly fewer cases of CHD than non-CHD), techniques like oversampling (e.g., SMOTE), undersampling, or using cost-sensitive learning algorithms may be necessary to prevent the model from being biased towards the majority class.

2.3. Machine Learning Algorithms

A variety of supervised machine learning algorithms are suitable for this binary classification task (at risk/not at

risk of CHD). The choice of algorithm depends on the data characteristics, interpretability requirements, and desired performance metrics.

- Logistic Regression: A linear model that estimates the probability of an outcome. It's simple, interpretable, and serves as a good baseline [6, 17].
- Decision Trees: Non-linear models that make decisions based on a series of if-then rules. They are intuitive and easily interpretable, making them valuable for understanding feature importance [17].
- Support Vector Machines (SVMs): Powerful algorithms that find an optimal hyperplane to separate classes in a high-dimensional space. They are effective for complex classification tasks, especially with non-linear kernels [2, 12].
- Random Forest: An ensemble method that constructs multiple decision trees during training and outputs the mode of the classes. It reduces overfitting and generally offers high accuracy [10, 19].
- Gradient Boosting Machines (e.g., XGBoost, LightGBM): Ensemble methods that build trees sequentially, with each new tree correcting errors of the previous ones. They often achieve state-of-the-art performance in tabular data [2, 19, 24].
- Artificial Neural Networks (ANNs) / Deep Learning: Multi-layered networks capable of learning complex, non-linear relationships. While requiring more data and computational resources, they can capture intricate patterns missed by simpler models [3, 9, 15]. For structured data, simpler ANNs are often used, while for image data (like fetal echocardiograms), Convolutional Neural Networks (CNNs) could be employed [15, 22].
- K-Nearest Neighbors (KNN): A non-parametric, lazy learning algorithm that classifies new data points based on the majority class of its 'k' nearest neighbors. It's simple but sensitive to high dimensionality [2].

2.4. Model Training and Validation

The prepared dataset would be split into training, validation, and test sets (e.g., 70% training, 15% validation, 15% test).

- Training: Models are trained on the training set to learn the relationships between maternal features and CHD outcomes.
- Hyperparameter Tuning: A crucial step involving optimizing model-specific parameters (e.g., 'k' for KNN, number of trees for Random Forest, learning rate for ANNs) using the validation set or cross-validation techniques (e.g., k-fold cross-validation) to prevent overfitting to the training data.

• Evaluation: The trained and tuned models are evaluated on the unseen test set to assess their generalization performance.

2.5. Evaluation Metrics

To provide a comprehensive assessment of model performance, the following metrics are essential for classification tasks, especially in medical diagnostics where false positives and false negatives have different implications:

- Accuracy: The proportion of correctly classified instances (both CHD and non-CHD) out of the total.
- Precision (Positive Predictive Value): The proportion of correctly predicted positive cases (CHD) out of all instances predicted as positive. High precision minimizes false alarms.
- Recall (Sensitivity): The proportion of correctly predicted positive cases (CHD) out of all actual positive cases. High recall ensures that most at-risk individuals are identified.
- F1-Score: The harmonic mean of precision and recall, providing a balanced measure that is useful when there is an uneven class distribution or when both precision and recall are important.
- Area Under the Receiver Operating Characteristic Curve (AUC-ROC): A measure of the model's ability to distinguish between classes across various threshold settings. An AUC closer to 1 indicates a better discriminatory power.
- Specificity: The proportion of correctly predicted negative cases (non-CHD) out of all actual negative cases. High specificity minimizes misclassifying healthy individuals.

These metrics, along with confusion matrices, provide a holistic view of the model's performance, allowing for a nuanced understanding of its clinical utility.

3. RESULTS

While this article outlines a conceptual framework rather than presenting new experimental results, it draws upon established findings in the field of machine learning applied to medical diagnostics and, specifically, to heart disease prediction. Based on a synthesis of existing literature, the typical results from applying various machine learning models to predict health outcomes, including congenital heart defects, demonstrate a general trend: more complex models capable of capturing nonlinear relationships tend to outperform simpler ones, provided sufficient data and proper tuning.

Several studies have investigated the use of machine

learning for predicting congenital heart defects or related cardiovascular conditions. For instance, Luo et al. (2017) compared three data mining methods (Logistic Regression, Decision Trees, and Gradient Boosting) for predicting congenital heart defects, highlighting the varying performance characteristics of each [10]. Similarly, Qu et al. (2022) explored innovative machine learning methods for screening and identifying predictors of congenital heart diseases, further solidifying the efficacy of these approaches [19]. Truong et al. (2022) demonstrated the application of machine learning in screening for congenital heart diseases using fetal

echocardiography, underscoring the potential for integrating imaging data with ML [22]. Ali et al. (2021) specifically focused on the prediction of congenital heart diseases in children using machine learning, providing further evidence of ML's utility [1].

Table 1 presents an illustrative, hypothetical comparison of expected performance for different machine learning models that could be applied to predict maternal risk for CHDs. These values are representative of what might be observed in well-designed studies, drawing parallels from similar predictive tasks in cardiology [4, 6, 17].

Table 1: Illustrative Hypothetical Performance Metrics for Machine Learning Models in Maternal CHD Risk Prediction

Model	Accuracy	Precision	Recall	F1-Score	AUC-
Wiodei	Accuracy	1 iccision	Recall	1-1-30010	Auc-
	(%)	(CHD)	(CHD)	(CHD)	ROC
Logistic Regression	75.0	0.65	0.60	0.62	0.78
Decision Tree	72.5	0.62	0.58	0.60	0.75
Support Vector Machine	78.0	0.70	0.68	0.69	0.82
Random Forest	83.5	0.78	0.75	0.76	0.88
Gradient Boosting (e.g.,	85.0	0.80	0.77	0.78	0.90
LightCDM)					
LightGBM)					
N. IN. I	04.0	0.70	0.76	0.77	0.00
Neural Network	84.0	0.79	0.76	0.77	0.89

Note: These are illustrative values for comparative purposes, reflecting general trends observed in predictive modeling studies within healthcare. Actual performance would vary based on dataset specifics, feature engineering, and hyperparameter tuning.

As indicated in this illustrative table, ensemble methods like Random Forest and Gradient Boosting, as well as Neural Networks, generally demonstrate superior performance compared to simpler models such as Logistic Regression or Decision Trees. This improved performance is often attributed to their ability to model complex, non-linear interactions between various maternal risk factors [10, 19, 24]. For instance, a combination of maternal age, pre-existing conditions, and specific lifestyle choices might cumulatively increase risk in a way that is difficult for linear models to capture.

The higher AUC-ROC values for ensemble and neural network models suggest better discriminatory power, meaning they are more effective at distinguishing between high-risk and low-risk mothers across various classification thresholds. This is particularly important in clinical settings where the balance between sensitivity (identifying true positives) and specificity (correctly

identifying true negatives) can be critically adjusted based on the clinical context. For example, a model with high recall might be preferred for initial screening to ensure fewer cases are missed, even if it results in a higher number of false positives that require further investigation.

These hypothetical results align with the general consensus in medical machine learning applications: advanced ML techniques can provide significant uplift in predictive accuracy and robustness for complex conditions like CHDs, especially when fed with rich, multi-modal clinical data.

4. DISCUSSION

The conceptual framework and illustrative results presented in this article highlight the profound potential of machine learning in transforming the landscape of prenatal risk assessment for congenital heart defects. The ability of ML algorithms to process complex, high-

dimensional data and uncover intricate patterns far surpasses traditional statistical methods, offering a powerful tool for proactive healthcare [12, 14, 23].

The superior hypothetical performance of advanced ML models, such as ensemble methods (Random Forest, Gradient Boosting) and Neural Networks, over simpler models like Logistic Regression or Decision Trees, is primarily attributable to their capacity to capture nonlinear relationships and interactions among numerous maternal risk factors [10, 19]. Congenital heart defects are known to have a multifactorial etiology, involving a complex interplay of genetic predispositions and environmental exposures [7, 16]. A mother's age, comorbidities, medication use during pregnancy, and even subtle environmental exposures can collectively contribute to an increased risk in ways that are not always additive or linear. Machine learning models, particularly deep learning architectures, are adept at modeling these complex, synergistic effects, leading to more accurate risk stratification [9, 15].

The implications of accurate prenatal CHD prediction are far-reaching. Early identification of high-risk pregnancies allows clinicians to:

- Offer Targeted Counseling: Provide comprehensive information to expectant parents about potential outcomes, management strategies, and available support systems [25].
- Optimize Prenatal Monitoring: Schedule more frequent and specialized fetal echocardiograms, enhancing the chances of early diagnosis and detailed anatomical assessment [22].
- Plan for Delivery: Facilitate delivery in tertiary care centers equipped with pediatric cardiology and cardiac surgery services, ensuring immediate post-natal care for affected infants [8].
- Improve Neonatal Outcomes: Timely intervention can significantly reduce morbidity and mortality rates associated with CHDs, leading to better long-term quality of life for the child [5, 11].

Despite the immense promise, several challenges must be addressed for the widespread clinical adoption of MLbased CHD prediction models. Data availability and quality remain critical. Large, comprehensive, and wellcurated datasets, often requiring multicenter collaboration, are essential for training robust and generalizable models [1, 23]. The interpretability of complex ML models, particularly deep neural networks, is another crucial concern in healthcare. Clinicians require transparency to understand why a model makes a particular prediction, enabling them to trust the model's output and explain it to patients. This necessitates research into Explainable AI (XAI) techniques that can

provide insights into feature importance and decision pathways [12].

Furthermore, ethical considerations surrounding data privacy, algorithmic bias, and the psychological impact of risk prediction on expectant parents must be carefully navigated [10]. Models must be validated on diverse populations to ensure fairness and avoid perpetuating health disparities. The integration of ML tools into existing clinical workflows also requires thoughtful design, ensuring they serve as assistive technologies rather than replacing clinical judgment. The rise of low-code and no-code platforms could potentially simplify the deployment and integration of such models into clinical systems, making them more accessible to healthcare providers [26].

Future directions for research in this domain are manifold. Beyond improving predictive accuracy, efforts should focus on incorporating diverse data modalities, such as genomics, proteomics, and advanced imaging features from fetal echocardiograms, into multimodal ML models. Longitudinal studies tracking maternal health and offspring outcomes would provide richer datasets for training. Real-time prediction capabilities, potentially integrated with wearable sensors monitoring of maternal continuous vitals environmental exposures, could offer new avenues for dynamic risk assessment. Finally, prospective clinical trials are necessary to validate the clinical utility, costeffectiveness, and ultimate impact of these ML-driven tools in routine prenatal care [22].

5. CONCLUSION

This article has underscored the significant potential of machine learning to enhance the prediction of congenital heart defects by identifying women at higher risk based on their maternal characteristics and health data. By leveraging sophisticated algorithms, ML models can uncover complex, non-linear relationships among various risk factors, leading to more accurate and proactive risk stratification compared to traditional methods. The illustrative performance comparison highlights the superior predictive capabilities of advanced ML techniques such as ensemble models and neural networks. While challenges related to data quality, model interpretability, and ethical considerations persist, ongoing research and technological advancements are paving the way for the clinical integration of these powerful tools. Ultimately, the successful deployment of ML-based predictive models in prenatal care holds the promise of improving early diagnosis, enabling timely interventions, optimizing clinical management, and significantly enhancing the health outcomes for children affected by congenital heart defects. The continued advancement in this field is vital for addressing one of the most common and critical birth anomalies globally.

REFERENCES

- [1] Ali, F. S. A., Al Hammadi, S. A. A., Redouane, A., & Tariq, M. U. (2021). Prediction of congenital heart diseases in children using machine learning. Journal of Management Information and Decision Sciences, 24, 1–34. https://www.abacademies.org/articles/prediction-of-congenital-heart-diseases-in-children-using-machine-learning.pdf
- [2] Chang, J.Jr, Binuesa, F., Caneo, L. F., Turquetto, A. L. R., Arita, E. C. T. C., Barbosa, A. C., Da Silva Fernandes, A. M., Trindade, E. M., Jatene, F. B., Dossou, P., & Jatene, M. B. (2020). Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study. PLoS One, 15(9), e0238199. DOI: 10.1371/journal.pone.0238199 PMID: 32886688
- [3] Dangare, C., & Apte, S. (2012). A data mining approach for prediction of heart disease using neural networks. International Journal of Computer Engineering and Technology, 3(3). https://ssrn.com/abstract=2175569
- [4] Domyati, A., & Memon, Q. (2022). Robust detection of cardiac disease using machine learning algorithms. In Proceedings of the 5th International Conference on Control and Computer Vision (pp. 52–55). DOI: 10.1145/3561613.3561622
- [5] Desai, H., Jones, C. E., Fogel, J. L., Negrin, K. A., Slater, N. L., Morris, K., Doody, L. R., Engstler, K., Torzone, A., Smith, J., & Butler, S. C. (2023). Assessment and management of feeding difficulties for infants with complex CHD. Cardiology in the Young, 33(1), 1–10. DOI: 10.1017/S1047951122004024 PMID: 36562257
- [6] Hammoud, A., Karaki, A., Tafreshi, R., Abdulla, S., & Wahid, M. (2024). Coronary heart disease prediction: A comparative study of machine learning algorithms. Journal of Advances in Information Technology, 15(1), 27–32. DOI: 10.12720/jait.15.1.27-32
- [7] Liu, S., Liu, J., Tang, J., Ji, J., Chen, J., & Liu, C. (2009). Environmental risk factors for congenital heart disease in the Shandong peninsula, China: A hospital-based case—control study. Journal of Epidemiology, 19(3), 122–130. DOI: 10.2188/jea.JE20080039 PMID: 19398851
- [8] Lo Muzio, F. P., Rozzi, G., Rossi, S., Luciani, G. B., Foresti, R., Cabassi, A., Fassina, L., & Miragoli, M. (2021). Artificial intelligence supports decision making during open-chest surgery of rare congenital heart defects. Journal of Clinical Medicine, 10(22), 5330. DOI: 10.3390/jcm10225330 PMID: 34830612

- [9] Lopez, D., & Manogaran, G. (2018). Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms, 10(1/2), 118. DOI: 10.1504/IJAIP.2018.10010530
- [10] Luo, Y., Li, Z., Guo, H., Cao, H., Song, C., Guo, X., & Zhang, Y. (2017). Predicting congenital heart defects: A comparison of three data mining methods. PLoS One, 12(5), e0177811. DOI: 10.1371/journal.pone.0177811 PMID: 28542318
- [11] Meda, J. T., & Mushiri, T. (2020). Predicting congenital heart diseases using Machine learning. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management (pp. 1716–1725). https://www.ieomsociety.org/harare2020/papers/415.pdf
- [12] Mello, C. A., Lewis, R., Brooks-Kayal, A., Carlsen, J., Grabenstatter, H., & White, A. M. (2014). Supervised learning for the neurosurgery intensive care unit using single-layer perceptron classifiers. In Ślęzak, D., Tan, A.-H., Peters, J. F., & Schwabe, L. (Eds.), Lecture notes in computer science: Vol. 8609. Brain informatics and health: BIH 2014 (pp. 231–241). Springer. DOI: 10.1007/978-3-319-09891-3 22
- [13] Munakata, M. (2023). Practical cutoff values of brachial—ankle pulse wave velocity to predict 10-Year CHD risk in the Japanese general population. Journal of Atherosclerosis and Thrombosis, 30(5), 437–439. DOI: 10.5551/jat.ED215 PMID: 36184559
- [14] Nordin, N., Zainol, Z., Mohd Noor, M. H., & Lai Fong, C. (2021). A comparative study of machine learning techniques for suicide attempts predictive model. Health Informatics Journal, 27(1), 1460458221989395. Advance online publication. DOI: 10.1177/1460458221989395 PMID: 33745355
- [15] Parveen, H., Rizvi, S. W. A., & Boddu, R. S. K. (2024). Enhanced knowledge based system for cardiovascular disease prediction using advanced fuzzy TOPSIS. International Journal of Intelligent Systems and Applications in Engineering, 12(11s), 570–583. https://www.ijisae.org/index.php/IJISAE/article/view/44 78/3137
- [16] Peng, J., Meng, Z., Zhou, S., Zhou, Y., Wu, Y., Wang, Q., Wang, J., & Sun, K. (2019). The non-genetic paternal factors for congenital heart defects: A systematic review and meta-analysis. Clinical Cardiology, 42(7), 684–691. DOI: 10.1002/clc.23194 PMID: 31073996
- [17] Reddy, V. S. K., Meghana, P., Reddy, N. V. S., & Rao, B. A. (2022). Prediction on cardiovascular disease using decision tree and naïve Bayes classifiers. Journal of Physics: Conference Series, 2161(1), 012015. DOI:

10.1088/1742-6596/2161/1/012015

- [18] Rani, S., & Masood, S. (2020). Predicting congenital heart disease using machine learning techniques. Journal of Discrete Mathematical Sciences and Cryptography, 23(1), 293–303. DOI: 10.1080/09720529.2020.1721862
- [19] Qu, Y., Deng, X., Lin, S., Han, F., Chang, H. H., Ou, Y., Nie, Z., Mai, J., Wang, X., Gao, X., Wu, Y., Chen, J., Zhuang, J., Ryan, I., & Liu, X. (2022). Using innovative machine learning methods to screen and identify predictors of congenital heart diseases. Frontiers in Cardiovascular Medicine, 8, 797002. Advance online publication. DOI: 10.3389/fcvm.2021.797002 PMID: 35071361
- [20] Song, Y., Higgins, H., Guo, J., Harrison, K., Schultz, E. N., Hales, B. J., Moses, E. K., Goldblatt, J., Pachter, N., & Zhang, G. (2018). Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. Journal of Translational Medicine, 16(1), 42. Advance online publication. DOI: 10.1186/s12967-018-1411-0 PMID: 29482591
- [21] Subhadra, K., & Vikas, B. (2019). Neural network based intelligent system for predicting heart disease. International Journal of Innovative Technology and Exploring Engineering, 8(5), 484–487. https://www.ijitee.org/wp-content/uploads/papers/v8i5/D2770028419.pdf
- [22] Truong, V. T., Nguyen, B. P., Nguyen-Vo, T., Mazur, W., Chung, E. S., Palmer, C., Tretter, J. T., Alsaied, T., Pham, V. T., Do, H. Q., Do, P. T. N., Pham, V. N., Ha, B. N., Chau, H. N., & Le, T. K. (2022). Application of machine learning in screening for congenital heart diseases using fetal echocardiography. The International Journal of Cardiovascular Imaging, 38(5), 1007–1015. DOI: 10.1007/s10554-022-02566-3 PMID: 35192082
- [23] Umm-E-Ammarah, N., Bukhari, F., Idrees, M., & Iqbal, W. (2021). Predictive analysis of congenital heart defects prior to birth. In 2021 International Conference on Robotics and Automation in Industry (ICRAI) (pp. 1–6). DOI: 10.1109/ICRAI54018.2021.9651436
- [24] Yang, H., Chen, Z., Yang, H., & Tian, M. (2023). Predicting coronary heart disease using an improved lightGBM model: Performance analysis and comparison. IEEE Access: Practical Innovations, Open Solutions, 11, 23366–23380. DOI: 10.1109/ACCESS.2023.3253885
- [25] van Hagen, I. M., & Roos-Hesselink, J. W. (2020). Pregnancy in congenital heart disease: Risk prediction and counselling. Heart (British Cardiac Society), 106(23), 1853–1861. DOI: 10.1136/heartjnl-2019-314702 PMID: 32611675

[26] Rohit Khankhoje, "Beyond Coding: A Comprehensive Study of Low-Code, No-Code and Traditional Automation," Journal of Artificial Intelligence & Cloud Computing, vol. 1, no. 4, pp. 1-5, 2022. DOI: 10.47363/JAICC/2022(1)148.