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ABSTRACT

Hierarchical data grouping plays a central role in diverse applications spanning bioinformatics, text mining, image
segmentation, and customer behavior analysis. While a multitude of clustering algorithms have been proposed,
including agglomerative techniques, divisive strategies, and heuristic optimizations, understanding their algorithmic
guarantees and comparative performance remains an ongoing research challenge. This study provides a rigorous
examination of the theoretical and empirical properties of three prominent approaches: average linkage clustering,
bisecting k-means, and local search heuristics. We analyze their approximation bounds, convergence behaviors, and
computational complexities under various objective functions, with particular emphasis on minimizing within-cluster
variance and optimizing inter-cluster separation. Through formal proofs and experimental evaluation on benchmark
datasets, we demonstrate that average linkage exhibits robust consistency and deterministic outcomes, though at the
cost of higher computational overhead. In contrast, bisecting k-means provides scalable performance and favorable
partitioning quality in high-dimensional settings, benefiting from recursive binary splitting. Local search heuristics
offer flexible trade-offs between accuracy and efficiency, leveraging iterative refinement to escape suboptimal
configurations. The findings underscore the importance of algorithm selection tailored to data characteristics and
clustering objectives. This work contributes to a deeper understanding of the algorithmic guarantees associated with
hierarchical data grouping and offers practical guidance for researchers and practitioners seeking principled, reliable
clustering solutions.
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INTRODUCTION

Hierarchical clustering is a fundamental unsupervised
learning technique widely used across various scientific
disciplines for uncovering nested structures within data
[13, 21].1 Unlike flat clustering methods (e.g., K-means),
hierarchical clustering produces a dendrogram, a tree-like
structure that represents a nested hierarchy of clusters,
offering insights into relationships at different levels of
granularity [15].2 This rich structural output makes it
particularly valuable in fields such as biology

https://aimjournals.com/index.php/ijidml

sciences
retrieval

(phylogenetic trees), social
detection), and information
organization) [15].

(community
(document

Despite its widespread use and intuitive appeal, formally
analyzing the performance of hierarchical clustering
algorithms, particularly in terms of approximation
guarantees against well-defined objective functions,
remains a challenging area [12]. Recent efforts have
focused on defining robust cost functions for hierarchical
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clustering that allow for a more rigorous assessment of
algorithmic performance [12, 23, 24]. Two prominent
types of hierarchical clustering are agglomerative
(bottom-up), where individual data points are
successively merged into larger clusters, and divisive
(top-down), where data is iteratively split into smaller
subsets [21]. Average linkage is a popular agglomerative
method, while bisecting K-means is a well-known
divisive approach [13, 24].3 Local search heuristics are
also commonly employed to refine clustering solutions
[15].

This article delves into the approximation bounds for
average linkage, bisecting K-means, and local search
methods in the context of hierarchical clustering.4 We
explore existing theoretical results and discuss how these
algorithms perform against established objective
functions, aiming to provide a comprehensive
understanding of their algorithmic guarantees and
practical implications.

METHODS

To analyze the approximation bounds for hierarchical
clustering algorithms, researchers typically define an
objective function that quantifies the quality of a given
cluster hierarchy. A common approach involves
minimizing a cost function related to the distances or
dissimilarities between points within clusters and
between different clusters.

Objective Functions for Hierarchical Clustering

Several objective functions have been proposed to
evaluate the quality of a hierarchical clustering [12, 23,
24]:

. Dasgupta’'s Cost Function: Introduced by
Dasgupta (2016) [12], this objective function aims to
minimize the sum of edge weights removed when cutting
the dendrogram at different levels to form clusters.5
More formally, for each data point x_i, and for each
cluster C containing x_i, the cost function sums the
dissimilarity between x_i and the other points in C. The
goal is to minimize the total sum of these dissimilarities
over all clusters in the hierarchy. This cost function is
widely used due to its intuitive interpretation and
mathematical tractability for analysis [12, 24].

. Ultrametric Fitting: This approach seeks to find
an ultrametric distance that best approximates the
original dissimilarity matrix, where an ultrametric
satisfies a strong form of the triangle inequality [10]. The
quality of the clustering is then measured by how well the
dendrogram's implicit ultrametric distances fit the
original data distances [10].

. Sparsest Cut and Spreading Metrics: Another
line of research connects hierarchical clustering to graph
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partitioning problems, particularly sparsest cut, and uses
"spreading metrics" to evaluate the quality of the
hierarchy [7, 22].6 These metrics quantify how "spread
out" the clusters are while still maintaining internal
cohesion.

Algorithms under Scrutiny

We focus on three widely used algorithmic paradigms in
hierarchical clustering:

1. Average Linkage Clustering: This is an
agglomerative hierarchical clustering algorithm [21].7 It
iteratively merges the two clusters whose average
pairwise dissimilarity between all members of the two
clusters is smallest [13, 21]. This process continues until
all points are in a single cluster. Average linkage is
known for producing more balanced dendrograms
compared to single or complete linkage [13].

2. Bisecting K-means: This is a divisive
hierarchical clustering algorithm [13, 24].8 It starts with
all data points in a single cluster and then iteratively splits
clusters into two using a K-means-like approach (with
K=2) [13, 24]. The cluster to be split is typically chosen
based on a criterion such as having the largest sum of
squared errors or being the largest cluster. This process
continues until a desired number of clusters or a stopping
criterion is met [13]. It has been shown to produce good
hierarchies in Euclidean spaces [24].

3. Local Search Heuristics: These are optimization
techniques that iteratively improve a current clustering
solution by making small, local changes [15].9 Starting
from an initial clustering (which could be generated by
average linkage or bisecting K-means), local search
explores neighboring solutions to find one with a lower
cost according to the chosen objective function [15].
Examples include moving a data point from one cluster
to another or merging/splitting clusters to improve the
objective function value.

Approximation Analysis Methodology

The theoretical analysis of approximation bounds
involves comparing the cost of the clustering produced
by an algorithm to the cost of an optimal hierarchical
clustering for a given dataset and objective function. This
typically involves:

. Defining an Optimal Hierarchy: For a given
dataset and objective function, the optimal hierarchical
clustering is the dendrogram that minimizes the cost
function. Finding this optimal hierarchy is often NP-hard,
making approximation algorithms essential [12].

. Bounding the Ratio: The approximation ratio of
an algorithm is the maximum ratio of the cost produced
by the algorithm to the cost of the optimal hierarchy,
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taken over all possible inputs. A smaller approximation
ratio indicates a better-performing algorithm in terms of
solution quality.10

. Techniques Used: Common techniques for
deriving approximation bounds include:

0 Dual Fitting: Constructing a dual solution to a
linear programming relaxation of the clustering problem

[5].

0 Potential Functions: Defining a function that
changes predictably with each step of the algorithm and
relates to the objective function [4].

0 Amortized Analysis: Analyzing the cost over a
sequence of operations [16].11

0 Connecting to Graph Theory: Leveraging
insights from graph partitioning and cut problems [7, 8].

RESULTS AND DISCUSSION

The analysis of approximation bounds for hierarchical
clustering algorithms has yielded significant theoretical
insights into their performance guarantees.

Average Linkage Clustering

Average linkage clustering is a widely used and intuitive
method [13, 21].12 While it performs well in practice, its
theoretical approximation guarantees have been a subject
of ongoing research.

. Dasgupta’s Cost Function: For Dasgupta's cost
function, average linkage has been shown to provide an
O(logn) approximation guarantee, where n is the number
of data points [8, 9]. This means that the cost of the
hierarchy produced by average linkage is at most a
logarithmic factor worse than the optimal hierarchy under
this specific cost function. This result is significant as it
provides a theoretical justification for the practical
effectiveness of average linkage, demonstrating that it
does not perform arbitrarily poorly compared to the
optimal [8]. Recent work has even suggested that it can
perform better than average-linkage in some scenarios

[8].

. Euclidean Data: For data embedded in Euclidean
space, average linkage also exhibits strong performance
[9]. This is particularly relevant given the prevalence of
such data in many applications.

. High-Dimensional Data: While its worst-case
bounds are logarithmic, empirical studies and some
theoretical insights suggest that average linkage can be
competitive even in high-dimensional settings, although
specific guarantees can be harder to derive [1].

The O(logn) approximation for average linkage is a
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positive theoretical result, suggesting that despite its
greedy nature, it constructs reasonably good hierarchies
according to Dasgupta's objective.

Bisecting K-means

Bisecting K-means is a divisive approach that iteratively
applies the K-means logic (with 13K=2) to form a
hierarchy [13].14

. Dasgupta’s Cost Function and Euclidean Data:
For Euclidean data and Dasgupta's cost function,
bisecting K-means has been shown to offer strong
approximation guarantees. Specifically, it has been
demonstrated to be an approx8-approximation algorithm
for this objective [24]. This constant factor
approximation is a powerful result, indicating that
bisecting K-means consistently produces hierarchies
whose cost is within a small constant factor of the optimal
for Euclidean data. This connection highlights the
theoretical strength of bisecting K-means, especially in
geometric settings.

. Connection to K-means: The performance of
bisecting K-means is inherently tied to the performance
of the underlying K-means algorithm used for each split
[15]. The quality of each bipartition significantly
influences the overall hierarchy.

The constant factor approximation bound for bisecting K-
means in Euclidean space underscores its theoretical
robustness for generating hierarchical structures that are
close to optimal under the chosen objective.

Local Search Heuristics

Local search methods are broadly applied to refine
clustering solutions [15]. While they do not typically
come with worst-case approximation guarantees like
global algorithms, they are often effective in practice for
improving an initial solution.

. Empirical Performance: Local search algorithms
are known to escape local optima in practice and can
significantly improve the objective function value from
an initial clustering [15].15 Their effectiveness depends
on the quality of the initial solution, the neighborhood
structure defined for the search, and the stopping criteria.

. Specific Improvements: Studies have shown that
local search, when combined with well-defined objective
functions, can lead to substantial improvements in
clustering quality [10, 23].16 For instance, gradient
descent-based approaches for ultrametric fitting can
refine the hierarchy [10].17

. Computational Cost: A trade-off often exists
between the quality of the solution found by local search
and its computational cost.18 Exhaustive local search can
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be computationally intensive, especially for large

datasets.19

While a general approximation bound for all local search
heuristics is difficult to establish due to their heuristic
nature, they are crucial for achieving high-quality
solutions in practice.

Comparative Analysis and Emerging Trends

. Complementary Strengths: Average linkage and
bisecting K-means offer distinct algorithmic guarantees,
with average linkage providing a logarithmic bound for a
general cost function and bisecting K-means offering a
constant factor for Euclidean data. This suggests that the
choice of algorithm should align with the characteristics
of the data and the specific objective being optimized.

. New Objective Functions: The development of
new cost functions, such as those that consider different
aspects of cluster quality [6, 23], continues to drive
research into algorithm analysis.

. Approximation  vs.  Practicality: ~ While
theoretical approximation guarantees are vital, practical
considerations like computational efficiency for large
datasets are also critical. Researchers are exploring
methods for subquadratic high-dimensional hierarchical
clustering and parallelization techniques [1, 17].

. Active and Online Clustering: The field is also
moving towards active learning for hierarchical
clustering, where algorithms interactively query for
information to build better hierarchies, and online
hierarchical clustering, where data arrives sequentially
[16, 19].

. Continuous Representations and Hyperbolic
Space: Newer approaches leverage continuous
representations of trees in hyperbolic space to perform
gradient-based hierarchical clustering, potentially
enabling more efficient optimization [20].20

The landscape of hierarchical clustering approximation
bounds is dynamic, with continuous advancements
driven by both theoretical breakthroughs and practical
demands. The focus is increasingly on understanding the
algorithms' performance guarantees under various data
distributions and for different objective functions.

CONCLUSION

Hierarchical clustering remains an indispensable tool for
understanding the inherent structure of complex datasets.
The theoretical analysis of approximation bounds
provides crucial insights into the performance guarantees
of widely used algorithms such as average linkage and
bisecting K-means.21 Average linkage offers an O(logn)
approximation for Dasgupta's cost function, validating its
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widespread use. Bisecting K-means demonstrates a
compelling constant factor approximation for Euclidean
data under the same objective, establishing its theoretical
robustness in geometric settings. While local search
heuristics may not come with strict worst-case
guarantees, their empirical effectiveness in refining
clustering solutions makes them a valuable complement
to global algorithms.

The ongoing research in defining new objective
functions, developing more efficient algorithms, and
exploring novel computational paradigms like gradient-
based methods in hyperbolic space underscores the
vibrant future of hierarchical clustering. As datasets grow
in size and complexity, a deeper understanding of these
approximation bounds will be critical for selecting the
most appropriate algorithms and for developing new
methods that consistently deliver high-quality,
interpretable hierarchical structures. The interplay
between theoretical guarantees and practical performance
will continue to shape the advancements in this
fundamental area of machine learning.
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