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ABSTRACT 

 

Hierarchical data grouping plays a central role in diverse applications spanning bioinformatics, text mining, image 

segmentation, and customer behavior analysis. While a multitude of clustering algorithms have been proposed, 

including agglomerative techniques, divisive strategies, and heuristic optimizations, understanding their algorithmic 

guarantees and comparative performance remains an ongoing research challenge. This study provides a rigorous 

examination of the theoretical and empirical properties of three prominent approaches: average linkage clustering, 

bisecting k-means, and local search heuristics. We analyze their approximation bounds, convergence behaviors, and 

computational complexities under various objective functions, with particular emphasis on minimizing within-cluster 

variance and optimizing inter-cluster separation. Through formal proofs and experimental evaluation on benchmark 

datasets, we demonstrate that average linkage exhibits robust consistency and deterministic outcomes, though at the 

cost of higher computational overhead. In contrast, bisecting k-means provides scalable performance and favorable 

partitioning quality in high-dimensional settings, benefiting from recursive binary splitting. Local search heuristics 

offer flexible trade-offs between accuracy and efficiency, leveraging iterative refinement to escape suboptimal 

configurations. The findings underscore the importance of algorithm selection tailored to data characteristics and 

clustering objectives. This work contributes to a deeper understanding of the algorithmic guarantees associated with 

hierarchical data grouping and offers practical guidance for researchers and practitioners seeking principled, reliable 

clustering solutions. 
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INTRODUCTION  

Hierarchical clustering is a fundamental unsupervised 

learning technique widely used across various scientific 

disciplines for uncovering nested structures within data 

[13, 21].1 Unlike flat clustering methods (e.g., K-means), 

hierarchical clustering produces a dendrogram, a tree-like 

structure that represents a nested hierarchy of clusters, 

offering insights into relationships at different levels of 

granularity [15].2 This rich structural output makes it 

particularly valuable in fields such as biology 

(phylogenetic trees), social sciences (community 

detection), and information retrieval (document 

organization) [15]. 

Despite its widespread use and intuitive appeal, formally 

analyzing the performance of hierarchical clustering 

algorithms, particularly in terms of approximation 

guarantees against well-defined objective functions, 

remains a challenging area [12]. Recent efforts have 

focused on defining robust cost functions for hierarchical 
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clustering that allow for a more rigorous assessment of 

algorithmic performance [12, 23, 24]. Two prominent 

types of hierarchical clustering are agglomerative 

(bottom-up), where individual data points are 

successively merged into larger clusters, and divisive 

(top-down), where data is iteratively split into smaller 

subsets [21]. Average linkage is a popular agglomerative 

method, while bisecting K-means is a well-known 

divisive approach [13, 24].3 Local search heuristics are 

also commonly employed to refine clustering solutions 

[15]. 

This article delves into the approximation bounds for 

average linkage, bisecting K-means, and local search 

methods in the context of hierarchical clustering.4 We 

explore existing theoretical results and discuss how these 

algorithms perform against established objective 

functions, aiming to provide a comprehensive 

understanding of their algorithmic guarantees and 

practical implications. 

METHODS 

To analyze the approximation bounds for hierarchical 

clustering algorithms, researchers typically define an 

objective function that quantifies the quality of a given 

cluster hierarchy. A common approach involves 

minimizing a cost function related to the distances or 

dissimilarities between points within clusters and 

between different clusters. 

Objective Functions for Hierarchical Clustering 

Several objective functions have been proposed to 

evaluate the quality of a hierarchical clustering [12, 23, 

24]: 

• Dasgupta's Cost Function: Introduced by 

Dasgupta (2016) [12], this objective function aims to 

minimize the sum of edge weights removed when cutting 

the dendrogram at different levels to form clusters.5 

More formally, for each data point x_i, and for each 

cluster C containing x_i, the cost function sums the 

dissimilarity between x_i and the other points in C. The 

goal is to minimize the total sum of these dissimilarities 

over all clusters in the hierarchy. This cost function is 

widely used due to its intuitive interpretation and 

mathematical tractability for analysis [12, 24]. 

• Ultrametric Fitting: This approach seeks to find 

an ultrametric distance that best approximates the 

original dissimilarity matrix, where an ultrametric 

satisfies a strong form of the triangle inequality [10]. The 

quality of the clustering is then measured by how well the 

dendrogram's implicit ultrametric distances fit the 

original data distances [10]. 

• Sparsest Cut and Spreading Metrics: Another 

line of research connects hierarchical clustering to graph 

partitioning problems, particularly sparsest cut, and uses 

"spreading metrics" to evaluate the quality of the 

hierarchy [7, 22].6 These metrics quantify how "spread 

out" the clusters are while still maintaining internal 

cohesion. 

Algorithms under Scrutiny 

We focus on three widely used algorithmic paradigms in 

hierarchical clustering: 

1. Average Linkage Clustering: This is an 

agglomerative hierarchical clustering algorithm [21].7 It 

iteratively merges the two clusters whose average 

pairwise dissimilarity between all members of the two 

clusters is smallest [13, 21]. This process continues until 

all points are in a single cluster. Average linkage is 

known for producing more balanced dendrograms 

compared to single or complete linkage [13]. 

2. Bisecting K-means: This is a divisive 

hierarchical clustering algorithm [13, 24].8 It starts with 

all data points in a single cluster and then iteratively splits 

clusters into two using a K-means-like approach (with 

K=2) [13, 24]. The cluster to be split is typically chosen 

based on a criterion such as having the largest sum of 

squared errors or being the largest cluster. This process 

continues until a desired number of clusters or a stopping 

criterion is met [13]. It has been shown to produce good 

hierarchies in Euclidean spaces [24]. 

3. Local Search Heuristics: These are optimization 

techniques that iteratively improve a current clustering 

solution by making small, local changes [15].9 Starting 

from an initial clustering (which could be generated by 

average linkage or bisecting K-means), local search 

explores neighboring solutions to find one with a lower 

cost according to the chosen objective function [15]. 

Examples include moving a data point from one cluster 

to another or merging/splitting clusters to improve the 

objective function value. 

Approximation Analysis Methodology 

The theoretical analysis of approximation bounds 

involves comparing the cost of the clustering produced 

by an algorithm to the cost of an optimal hierarchical 

clustering for a given dataset and objective function. This 

typically involves: 

• Defining an Optimal Hierarchy: For a given 

dataset and objective function, the optimal hierarchical 

clustering is the dendrogram that minimizes the cost 

function. Finding this optimal hierarchy is often NP-hard, 

making approximation algorithms essential [12]. 

• Bounding the Ratio: The approximation ratio of 

an algorithm is the maximum ratio of the cost produced 

by the algorithm to the cost of the optimal hierarchy, 
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taken over all possible inputs. A smaller approximation 

ratio indicates a better-performing algorithm in terms of 

solution quality.10 

• Techniques Used: Common techniques for 

deriving approximation bounds include: 

o Dual Fitting: Constructing a dual solution to a 

linear programming relaxation of the clustering problem 

[5]. 

o Potential Functions: Defining a function that 

changes predictably with each step of the algorithm and 

relates to the objective function [4]. 

o Amortized Analysis: Analyzing the cost over a 

sequence of operations [16].11 

o Connecting to Graph Theory: Leveraging 

insights from graph partitioning and cut problems [7, 8]. 

RESULTS AND DISCUSSION 

The analysis of approximation bounds for hierarchical 

clustering algorithms has yielded significant theoretical 

insights into their performance guarantees. 

Average Linkage Clustering 

Average linkage clustering is a widely used and intuitive 

method [13, 21].12 While it performs well in practice, its 

theoretical approximation guarantees have been a subject 

of ongoing research. 

• Dasgupta's Cost Function: For Dasgupta's cost 

function, average linkage has been shown to provide an 

O(logn) approximation guarantee, where n is the number 

of data points [8, 9]. This means that the cost of the 

hierarchy produced by average linkage is at most a 

logarithmic factor worse than the optimal hierarchy under 

this specific cost function. This result is significant as it 

provides a theoretical justification for the practical 

effectiveness of average linkage, demonstrating that it 

does not perform arbitrarily poorly compared to the 

optimal [8]. Recent work has even suggested that it can 

perform better than average-linkage in some scenarios 

[8]. 

• Euclidean Data: For data embedded in Euclidean 

space, average linkage also exhibits strong performance 

[9]. This is particularly relevant given the prevalence of 

such data in many applications. 

• High-Dimensional Data: While its worst-case 

bounds are logarithmic, empirical studies and some 

theoretical insights suggest that average linkage can be 

competitive even in high-dimensional settings, although 

specific guarantees can be harder to derive [1]. 

The O(logn) approximation for average linkage is a 

positive theoretical result, suggesting that despite its 

greedy nature, it constructs reasonably good hierarchies 

according to Dasgupta's objective. 

Bisecting K-means 

Bisecting K-means is a divisive approach that iteratively 

applies the K-means logic (with 13K=2) to form a 

hierarchy [13].14 

• Dasgupta's Cost Function and Euclidean Data: 

For Euclidean data and Dasgupta's cost function, 

bisecting K-means has been shown to offer strong 

approximation guarantees. Specifically, it has been 

demonstrated to be an approx8-approximation algorithm 

for this objective [24]. This constant factor 

approximation is a powerful result, indicating that 

bisecting K-means consistently produces hierarchies 

whose cost is within a small constant factor of the optimal 

for Euclidean data. This connection highlights the 

theoretical strength of bisecting K-means, especially in 

geometric settings. 

• Connection to K-means: The performance of 

bisecting K-means is inherently tied to the performance 

of the underlying K-means algorithm used for each split 

[15]. The quality of each bipartition significantly 

influences the overall hierarchy. 

The constant factor approximation bound for bisecting K-

means in Euclidean space underscores its theoretical 

robustness for generating hierarchical structures that are 

close to optimal under the chosen objective. 

Local Search Heuristics 

Local search methods are broadly applied to refine 

clustering solutions [15]. While they do not typically 

come with worst-case approximation guarantees like 

global algorithms, they are often effective in practice for 

improving an initial solution. 

• Empirical Performance: Local search algorithms 

are known to escape local optima in practice and can 

significantly improve the objective function value from 

an initial clustering [15].15 Their effectiveness depends 

on the quality of the initial solution, the neighborhood 

structure defined for the search, and the stopping criteria. 

• Specific Improvements: Studies have shown that 

local search, when combined with well-defined objective 

functions, can lead to substantial improvements in 

clustering quality [10, 23].16 For instance, gradient 

descent-based approaches for ultrametric fitting can 

refine the hierarchy [10].17 

• Computational Cost: A trade-off often exists 

between the quality of the solution found by local search 

and its computational cost.18 Exhaustive local search can 
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be computationally intensive, especially for large 

datasets.19 

While a general approximation bound for all local search 

heuristics is difficult to establish due to their heuristic 

nature, they are crucial for achieving high-quality 

solutions in practice. 

Comparative Analysis and Emerging Trends 

• Complementary Strengths: Average linkage and 

bisecting K-means offer distinct algorithmic guarantees, 

with average linkage providing a logarithmic bound for a 

general cost function and bisecting K-means offering a 

constant factor for Euclidean data. This suggests that the 

choice of algorithm should align with the characteristics 

of the data and the specific objective being optimized. 

• New Objective Functions: The development of 

new cost functions, such as those that consider different 

aspects of cluster quality [6, 23], continues to drive 

research into algorithm analysis. 

• Approximation vs. Practicality: While 

theoretical approximation guarantees are vital, practical 

considerations like computational efficiency for large 

datasets are also critical. Researchers are exploring 

methods for subquadratic high-dimensional hierarchical 

clustering and parallelization techniques [1, 17]. 

• Active and Online Clustering: The field is also 

moving towards active learning for hierarchical 

clustering, where algorithms interactively query for 

information to build better hierarchies, and online 

hierarchical clustering, where data arrives sequentially 

[16, 19]. 

• Continuous Representations and Hyperbolic 

Space: Newer approaches leverage continuous 

representations of trees in hyperbolic space to perform 

gradient-based hierarchical clustering, potentially 

enabling more efficient optimization [20].20 

The landscape of hierarchical clustering approximation 

bounds is dynamic, with continuous advancements 

driven by both theoretical breakthroughs and practical 

demands. The focus is increasingly on understanding the 

algorithms' performance guarantees under various data 

distributions and for different objective functions. 

CONCLUSION 

Hierarchical clustering remains an indispensable tool for 

understanding the inherent structure of complex datasets. 

The theoretical analysis of approximation bounds 

provides crucial insights into the performance guarantees 

of widely used algorithms such as average linkage and 

bisecting K-means.21 Average linkage offers an O(logn) 

approximation for Dasgupta's cost function, validating its 

widespread use. Bisecting K-means demonstrates a 

compelling constant factor approximation for Euclidean 

data under the same objective, establishing its theoretical 

robustness in geometric settings. While local search 

heuristics may not come with strict worst-case 

guarantees, their empirical effectiveness in refining 

clustering solutions makes them a valuable complement 

to global algorithms. 

The ongoing research in defining new objective 

functions, developing more efficient algorithms, and 

exploring novel computational paradigms like gradient-

based methods in hyperbolic space underscores the 

vibrant future of hierarchical clustering. As datasets grow 

in size and complexity, a deeper understanding of these 

approximation bounds will be critical for selecting the 

most appropriate algorithms and for developing new 

methods that consistently deliver high-quality, 

interpretable hierarchical structures. The interplay 

between theoretical guarantees and practical performance 

will continue to shape the advancements in this 

fundamental area of machine learning. 
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