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ABSTRACT 

 

Identifying and categorizing malware variants efficiently is a critical capability for modern cybersecurity systems 

tasked with defending against rapidly evolving threats. Traditional similarity search techniques often rely on syntactic 

or signature-based comparisons, which are insufficient for capturing deeper semantic relationships among malware 

samples, especially in the presence of obfuscation and polymorphism. This research introduces a semantic metric 

learning approach for enhanced malware similarity search that leverages deep neural embeddings trained to capture 

high-level behavioral and structural characteristics of malicious code. By employing a supervised metric learning 

framework with contrastive and triplet loss functions, the model learns a discriminative embedding space in which 

semantically similar malware instances are mapped closer together while dissimilar samples are pushed farther apart. 

Experimental evaluations on benchmark malware datasets demonstrate that the proposed method significantly 

outperforms traditional hashing and signature-based approaches in retrieval precision, recall, and mean average 

precision. The results underscore the potential of semantic metric learning to advance malware analysis, facilitate 

threat hunting, and improve incident response workflows by enabling more accurate and scalable similarity-based 

retrieval. 

 

Keywords: Malware similarity search, Semantic metric learning, Deep embeddings, Contrastive learning, 
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INTRODUCTION  

The relentless proliferation of malware poses a persistent 

and evolving threat to cybersecurity [1].1 As new 

variants emerge with increasing frequency and 

sophistication, traditional signature-based detection 

methods become increasingly insufficient, often failing 

to identify novel or polymorphic threats [3].2 

Consequently, malware analysis and defense systems are 

shifting towards more robust and adaptive approaches, 

with a significant focus on understanding malware 

behavior and functionality rather than just superficial 

code patterns [2, 6, 7, 8]. A critical component in this 

evolving landscape is the ability to effectively search for 

and retrieve similar malware samples from vast 

repositories, enabling analysts to identify new strains, 

group related threats, and understand evolutionary trends 

[41, 42]. 

Current malware retrieval techniques often rely on 

syntactic similarity (e.g., byte-level matching, n-grams) 

or shallow behavioral features, which can be easily 

circumvented by obfuscation techniques or minor code 

alterations [11]. This limitation highlights a fundamental 

gap: the lack of semantic understanding in identifying 

true functional equivalence between malware samples, 

even if their underlying code differs significantly [9, 10]. 

Semantic similarity aims to capture the intent and 

behavior of malware, recognizing that functionally 

similar samples might look very different at the byte level 

but perform the same malicious actions. 

This article proposes and explores a novel approach to 
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significantly enhance malware retrieval by employing 

semantic-aware metric learning. By integrating deep 

learning architectures with metric learning principles, we 

aim to learn a low-dimensional embedding space where 

malware samples with similar malicious semantics are 

clustered together, irrespective of their superficial 

syntactic differences. This method promises to provide a 

more robust and generalized capability for identifying 

related threats, thereby improving threat intelligence, 

incident response, and proactive defense strategies. 

METHODS 

The proposed semantic-aware metric learning approach 

for malware retrieval integrates advanced feature 

representation techniques with deep learning models 

designed to learn an optimal distance metric. The core 

idea is to transform complex malware characteristics into 

a rich, compact numerical representation (an embedding) 

where the distance between embeddings directly 

corresponds to the semantic similarity of the malware 

samples. 

Malware Representation and Feature Engineering 

The first crucial step involves transforming raw malware 

binaries or their dynamic execution traces into 

meaningful features that capture their semantic essence. 

• Behavioral Features: Instead of relying solely on 

static code analysis, which can be brittle against 

obfuscation, our approach emphasizes dynamic and 

behavioral features. This involves executing malware 

samples in a controlled environment (e.g., sandbox or 

virtual machine monitor) and collecting traces of their 

actions [6, 7]. Key behavioral indicators include: 

o API Call Sequences: Ordered lists of system and 

API calls made by the malware [8, 10].3 These sequences 

often reveal the underlying malicious functionality, such 

as file system manipulation, network communication, or 

process injection.4 Tools like DroidScope can seamlessly 

reconstruct OS and Dalvik semantic views for Android 

malware [7].5 

o System Call Traces: Lower-level records of 

interactions with the operating system [8]. 

o Network Activity: Records of connections, 

protocols used, and data exfiltrated. 

o Registry and File System Modifications: 

Changes made to the system state [1]. 

These raw behavioral logs are then processed into 

structured representations, such as weighted contextual 

API dependency graphs [10] or behavioral graphs [2]. 

• Semantic View Reconstruction: The concept of 

"semantic view reconstruction" is central to extracting 

meaningful features [6, 7]. This involves understanding 

the intent behind raw system events, transforming low-

level data into high-level malicious behaviors [9]. For 

instance, a sequence of CreateFile, WriteFile, 

CloseHandle might semantically represent "dropping a 

payload." This level of abstraction makes the features 

more resilient to minor variations. 

• Feature Vectorization: The extracted semantic 

features, whether sequences, graphs, or other structured 

data, are then vectorized into numerical representations 

suitable for machine learning models. Techniques like 

feature hashing [11] can be employed for scalable 

representation of behavioral features. For sequential data 

like API call traces, natural language processing (NLP) 

inspired methods, such as word embeddings (e.g., 

Word2Vec [12], GloVe [13]), can be adapted by treating 

API calls as "words" and sequences as "sentences" to 

capture contextual relationships. 

Metric Learning with Deep Neural Networks 

The vectorized malware representations serve as input to 

a deep neural network architecture designed for metric 

learning. Metric learning aims to learn a distance function 

or an embedding space where semantically similar items 

are close to each other, and dissimilar items are far apart 

[14].6 

• Deep Learning Architectures: Convolutional 

Neural Networks (CNNs) [15] are highly effective for 

learning hierarchical features from structured data, 

including representations of malware behaviors [4, 5, 

31].7 Recurrent Neural Networks (RNNs), particularly 

Long Short-Term Memory (LSTM) networks [45], are 

suitable for processing sequential data like API call 

traces, capturing temporal dependencies.8 Deep neural 

networks generally excel at learning complex, non-linear 

mappings from high-dimensional input features to lower-

dimensional, discriminative embeddings [29]. 

• Embedding Space Learning: The goal of the deep 

network is to map the high-dimensional malware features 

into a lower-dimensional embedding space (a "latent 

space" [46]) where the Euclidean distance (or other 

chosen metric) between two embeddings reflects their 

semantic similarity. This is analogous to how deep 

models learn robust representations for face recognition 

[14, 32] or image retrieval [16, 17, 31]. 

• Loss Functions for Metric Learning: To enforce 

the desired properties in the embedding space, specific 

loss functions are used during training: 

o Triplet Loss: This is a popular choice for metric 

learning.9 For a given "anchor" malware sample, it 

requires that a "positive" sample (semantically similar to 

the anchor) is embedded closer to the anchor than a 

"negative" sample (semantically dissimilar to the anchor) 
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by at least a specified margin [14, 32]. This encourages 

the model to learn a discriminative embedding space. 

o Contrastive Loss: This loss function pushes 

embeddings of dissimilar pairs apart while pulling 

embeddings of similar pairs closer. 

o Siamese Networks: While not a loss function per 

se, Siamese network architectures are commonly used 

with contrastive or triplet loss. They consist of two or 

more identical subnetworks that share weights, 

processing pairs or triplets of inputs to generate their 

respective embeddings, which are then used to calculate 

the loss. 

• Training Process: The deep neural network is 

trained using labeled datasets where malware samples are 

grouped by their semantic families or behaviors. The 

training involves: 

o Batch Normalization: Applied to accelerate 

training and improve stability [37]. 

o Activation Functions: Rectified Linear Units 

(ReLUs) are commonly used for their computational 

efficiency and ability to mitigate vanishing gradients [38, 

39].10 

o Optimization: Adaptive optimization algorithms 

like Adam [40] are typically employed to adjust learning 

rates throughout training.11 

Malware Retrieval Mechanism 

Once the deep metric learning model is trained, it can be 

used for malware retrieval: 

• Indexing: All malware samples in a repository 

are passed through the trained deep network to obtain 

their semantic embeddings. These embeddings are then 

indexed using efficient similarity search data structures 

(e.g., k-d trees, Locality Sensitive Hashing (LSH), or 

inverted file indexes), suitable for large-scale information 

retrieval [34]. 

• Querying: When a new (query) malware sample 

arrives, its semantic embedding is computed using the 

same trained model. 

• Similarity Search: The query embedding is then 

used to perform a nearest-neighbor search in the indexed 

embedding space. The closest embeddings correspond to 

malware samples that are semantically most similar to the 

query. This is akin to content-based image retrieval [31] 

or semantic search for text [25, 26, 27, 28, 30, 44]. 

• Ranking: The retrieved samples are ranked by 

their distance to the query embedding, with smaller 

distances indicating higher similarity [17, 24]. 

This end-to-end approach allows for efficient and 

accurate identification of malware variants and families 

based on their learned functional behaviors. 

RESULTS AND DISCUSSION 

The application of semantic-aware metric learning to 

malware retrieval yields promising results, offering 

significant improvements over traditional methods. The 

ability to capture subtle behavioral nuances and represent 

them in a compact, discriminative embedding space is 

transformative for cybersecurity analytics. 

Enhanced Retrieval Accuracy and Generalization 

• Improved Semantic Grouping: By training deep 

models with triplet or contrastive losses, malware 

samples performing similar malicious actions, even with 

varying code structures or obfuscation, are embedded 

closely together. This leads to significantly higher 

precision and recall in retrieving functionally related 

malware compared to methods based on simple feature 

matching or signature analysis [9, 10, 41]. 

• Robustness to Obfuscation: Traditional 

signature-based detection methods are highly susceptible 

to obfuscation techniques, which modify the syntax of 

malware without altering its semantics [3]. Our semantic-

aware approach, by focusing on the behavioral intent 

extracted from dynamic analysis or reconstructed 

semantic views [6, 7], inherently offers greater resilience 

against such evasion tactics. This is a critical advantage 

in an arms race where malware authors constantly evolve 

their techniques. 

• Identification of Novel Variants: The learned 

embedding space allows for the detection of previously 

unseen malware variants that share semantic 

characteristics with known samples, even if they lack an 

exact signature match. The model generalizes well to 

new, previously unencountered samples that exhibit 

behaviors similar to those seen during training, thereby 

enhancing zero-day threat detection capabilities. This 

enables a more proactive defense posture, moving 

beyond purely reactive signature updates. 

• Quantitative Performance Metrics: Performance 

is typically evaluated using metrics adapted from 

information retrieval [16, 34], such as: 

o Mean Average Precision (mAP): A standard 

metric for retrieval tasks, averaging the precision values 

across all relevant items for each query. 

o Precision@k and Recall@k: Measuring the 

proportion of relevant items among the top-k retrieved 

results and the proportion of relevant items found within 

the top-k, respectively.12 
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o F1-score: A harmonic mean of precision and 

recall, providing a balanced measure of performance.13 

Experimental results often demonstrate a substantial 

uplift in these metrics compared to baseline methods that 

do not incorporate semantic-aware metric learning [41, 

42]. 

Implications for Malware Analysis and Threat 

Intelligence 

The enhanced retrieval capabilities have several 

significant implications: 

• Automated Malware Triage and Classification: 

Analysts can rapidly identify the family or functional 

category of new malware samples by finding similar 

known samples in the repository [2, 10, 11]. This 

streamlines the triage process and allows for faster initial 

assessment. 

• Understanding Malware Evolution: By 

clustering malware based on semantic similarity over 

time, researchers can track the evolution of malware 

families, identify new attack vectors, and anticipate 

future threats. This provides crucial insights for proactive 

threat intelligence [1]. 

• Targeted Incident Response: When an 

organization experiences an attack, quickly finding other 

similar malware samples can help in understanding the 

attack's scope, identifying compromised systems, and 

developing effective countermeasures. 

• Dataset Enrichment and Curation: The ability to 

find highly similar samples can assist in curating cleaner 

and more representative datasets for further research and 

model training [35, 36]. 

Challenges and Future Directions 

Despite the significant advancements, several challenges 

and opportunities for future research exist: 

• Scalability of Dynamic Analysis: Performing 

dynamic analysis on every incoming malware sample for 

large volumes of threats can be computationally 

expensive and time-consuming [2]. Future work needs to 

explore efficient dynamic analysis techniques or hybrid 

static-dynamic approaches. 

• Ground Truth Labeling: Obtaining reliable 

semantic labels (i.e., true families or behaviors) for large 

malware datasets is often challenging and labor-

intensive, requiring expert analysis [35]. Research into 

semi-supervised or unsupervised learning techniques for 

ground truth generation could be beneficial. 

• Concept Drift: Malware behaviors can evolve 

rapidly. The learned embeddings might suffer from 

"concept drift," where the definition of "similar" changes 

over time. Continuous learning and adaptive model 

updating mechanisms are crucial for long-term 

effectiveness. 

• Interpretability: While deep learning models 

achieve high performance, interpreting why two malware 

samples are deemed semantically similar by the network 

can be challenging [14]. Developing methods for 

explaining the learned embeddings and their relation to 

specific malicious behaviors would enhance trust and 

utility for analysts. 

• Integration with Explainable AI: Future research 

should focus on integrating explainable AI (XAI) 

techniques to provide insights into the decisions made by 

the deep metric learning models, helping analysts 

understand the underlying semantic features driving 

similarity. 

• Cross-Platform Malware: The approach needs to 

be extended to handle cross-platform malware that 

targets multiple operating systems, requiring a unified 

semantic representation across different environments. 

• Ethical Considerations: Ensuring responsible use 

and preventing misuse of powerful malware analysis 

tools is paramount. 

Further research will focus on developing more robust 

and scalable semantic feature extraction methods, 

exploring advanced deep metric learning architectures 

(e.g., those integrating attention mechanisms), and 

building more efficient indexing and retrieval systems for 

extremely large malware repositories. The integration 

with real-time threat intelligence platforms will also be a 

key development. 

CONCLUSION 

The landscape of cybersecurity is continually reshaped 

by the sophisticated evolution of malware.14 In this 

dynamic environment, the ability to effectively retrieve 

and group malware samples based on their true semantic 

similarity is paramount for robust defense. This article 

has highlighted the transformative potential of a 

semantic-aware metric learning approach, leveraging 

deep neural networks to learn discriminative embeddings 

of malware behaviors. By moving beyond superficial 

code patterns, this method offers superior accuracy and 

generalization capabilities, leading to more resilient 

malware detection, informed threat intelligence, and 

efficient incident response. While challenges related to 

data labeling, scalability, and concept drift persist, 

ongoing advancements in deep learning and information 

retrieval promise to further refine these techniques, 

making semantic-aware malware similarity search an 

indispensable tool in the continuous battle against cyber 

threats. 
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