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ABSTRACT

Identifying and categorizing malware variants efficiently is a critical capability for modern cybersecurity systems
tasked with defending against rapidly evolving threats. Traditional similarity search techniques often rely on syntactic
or signature-based comparisons, which are insufficient for capturing deeper semantic relationships among malware
samples, especially in the presence of obfuscation and polymorphism. This research introduces a semantic metric
learning approach for enhanced malware similarity search that leverages deep neural embeddings trained to capture
high-level behavioral and structural characteristics of malicious code. By employing a supervised metric learning
framework with contrastive and triplet loss functions, the model learns a discriminative embedding space in which
semantically similar malware instances are mapped closer together while dissimilar samples are pushed farther apart.
Experimental evaluations on benchmark malware datasets demonstrate that the proposed method significantly
outperforms traditional hashing and signature-based approaches in retrieval precision, recall, and mean average
precision. The results underscore the potential of semantic metric learning to advance malware analysis, facilitate
threat hunting, and improve incident response workflows by enabling more accurate and scalable similarity-based
retrieval.

Keywords: Malware similarity search, Semantic metric learning, Deep embeddings, Contrastive learning,
Cybersecurity, Malware analysis, Metric space modeling, Threat intelligence, Neural networks, Information retrieval.

INTRODUCTION
[41, 42].
The relentless proliferation of malware poses a persistent

and evolving threat to cybersecurity [1].1 As new
variants emerge with increasing frequency and
sophistication, traditional signature-based detection
methods become increasingly insufficient, often failing
to identify novel or polymorphic threats [3].2
Consequently, malware analysis and defense systems are
shifting towards more robust and adaptive approaches,
with a significant focus on understanding malware
behavior and functionality rather than just superficial
code patterns [2, 6, 7, 8]. A critical component in this
evolving landscape is the ability to effectively search for
and retrieve similar malware samples from vast
repositories, enabling analysts to identify new strains,
group related threats, and understand evolutionary trends
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Current malware retrieval techniques often rely on
syntactic similarity (e.g., byte-level matching, n-grams)
or shallow behavioral features, which can be easily
circumvented by obfuscation techniques or minor code
alterations [11]. This limitation highlights a fundamental
gap: the lack of semantic understanding in identifying
true functional equivalence between malware samples,
even if their underlying code differs significantly [9, 10].
Semantic similarity aims to capture the intent and
behavior of malware, recognizing that functionally
similar samples might look very different at the byte level
but perform the same malicious actions.

This article proposes and explores a novel approach to
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significantly enhance malware retrieval by employing
semantic-aware metric learning. By integrating deep
learning architectures with metric learning principles, we
aim to learn a low-dimensional embedding space where
malware samples with similar malicious semantics are
clustered together, irrespective of their superficial
syntactic differences. This method promises to provide a
more robust and generalized capability for identifying
related threats, thereby improving threat intelligence,
incident response, and proactive defense strategies.

METHODS

The proposed semantic-aware metric learning approach
for malware retrieval integrates advanced feature
representation techniques with deep learning models
designed to learn an optimal distance metric. The core
idea is to transform complex malware characteristics into
a rich, compact numerical representation (an embedding)
where the distance between embeddings directly
corresponds to the semantic similarity of the malware
samples.

Malware Representation and Feature Engineering

The first crucial step involves transforming raw malware
binaries or their dynamic execution traces into
meaningful features that capture their semantic essence.

. Behavioral Features: Instead of relying solely on
static code analysis, which can be brittle against
obfuscation, our approach emphasizes dynamic and
behavioral features. This involves executing malware
samples in a controlled environment (e.g., sandbox or
virtual machine monitor) and collecting traces of their
actions [6, 7]. Key behavioral indicators include:

0 API Call Sequences: Ordered lists of system and
API calls made by the malware [8, 10].3 These sequences
often reveal the underlying malicious functionality, such
as file system manipulation, network communication, or
process injection.4 Tools like DroidScope can seamlessly
reconstruct OS and Dalvik semantic views for Android
malware [7].5

0 System Call Traces: Lower-level records of
interactions with the operating system [8].

0 Network Activity: Records of connections,
protocols used, and data exfiltrated.

0 Registry and File System Modifications:
Changes made to the system state [1].

These raw behavioral logs are then processed into
structured representations, such as weighted contextual
API dependency graphs [10] or behavioral graphs [2].

. Semantic View Reconstruction: The concept of
"semantic view reconstruction™ is central to extracting
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meaningful features [6, 7]. This involves understanding
the intent behind raw system events, transforming low-
level data into high-level malicious behaviors [9]. For
instance, a sequence of CreateFile, WriteFile,
CloseHandle might semantically represent "dropping a
payload." This level of abstraction makes the features
more resilient to minor variations.

. Feature Vectorization: The extracted semantic
features, whether sequences, graphs, or other structured
data, are then vectorized into numerical representations
suitable for machine learning models. Techniques like
feature hashing [11] can be employed for scalable
representation of behavioral features. For sequential data
like API call traces, natural language processing (NLP)
inspired methods, such as word embeddings (e.g.,
Word2Vec [12], GloVe [13]), can be adapted by treating
API calls as "words" and sequences as "sentences"” to
capture contextual relationships.

Metric Learning with Deep Neural Networks

The vectorized malware representations serve as input to
a deep neural network architecture designed for metric
learning. Metric learning aims to learn a distance function
or an embedding space where semantically similar items
are close to each other, and dissimilar items are far apart
[14].6

. Deep Learning Architectures: Convolutional
Neural Networks (CNNs) [15] are highly effective for
learning hierarchical features from structured data,
including representations of malware behaviors [4, 5,
31].7 Recurrent Neural Networks (RNNs), particularly
Long Short-Term Memory (LSTM) networks [45], are
suitable for processing sequential data like API call
traces, capturing temporal dependencies.8 Deep neural
networks generally excel at learning complex, non-linear
mappings from high-dimensional input features to lower-
dimensional, discriminative embeddings [29].

. Embedding Space Learning: The goal of the deep
network is to map the high-dimensional malware features
into a lower-dimensional embedding space (a "latent
space" [46]) where the Euclidean distance (or other
chosen metric) between two embeddings reflects their
semantic similarity. This is analogous to how deep
models learn robust representations for face recognition
[14, 32] or image retrieval [16, 17, 31].

. Loss Functions for Metric Learning: To enforce
the desired properties in the embedding space, specific
loss functions are used during training:

0 Triplet Loss: This is a popular choice for metric
learning.9 For a given "anchor" malware sample, it
requires that a "positive"” sample (semantically similar to
the anchor) is embedded closer to the anchor than a
"negative" sample (semantically dissimilar to the anchor)
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by at least a specified margin [14, 32]. This encourages
the model to learn a discriminative embedding space.

0 Contrastive Loss: This loss function pushes
embeddings of dissimilar pairs apart while pulling
embeddings of similar pairs closer.

0 Siamese Networks: While not a loss function per
se, Siamese network architectures are commonly used
with contrastive or triplet loss. They consist of two or
more identical subnetworks that share weights,
processing pairs or triplets of inputs to generate their
respective embeddings, which are then used to calculate
the loss.

. Training Process: The deep neural network is
trained using labeled datasets where malware samples are
grouped by their semantic families or behaviors. The
training involves:

0 Batch Normalization: Applied to accelerate
training and improve stability [37].

0 Activation Functions: Rectified Linear Units
(ReLUs) are commonly used for their computational
efficiency and ability to mitigate vanishing gradients [38,
39].10

0 Optimization: Adaptive optimization algorithms
like Adam [40] are typically employed to adjust learning
rates throughout training.11

Malware Retrieval Mechanism

Once the deep metric learning model is trained, it can be
used for malware retrieval:

. Indexing: All malware samples in a repository
are passed through the trained deep network to obtain
their semantic embeddings. These embeddings are then
indexed using efficient similarity search data structures
(e.g., k-d trees, Locality Sensitive Hashing (LSH), or
inverted file indexes), suitable for large-scale information
retrieval [34].

. Querying: When a new (query) malware sample
arrives, its semantic embedding is computed using the
same trained model.

. Similarity Search: The query embedding is then
used to perform a nearest-neighbor search in the indexed
embedding space. The closest embeddings correspond to
malware samples that are semantically most similar to the
query. This is akin to content-based image retrieval [31]
or semantic search for text [25, 26, 27, 28, 30, 44].

. Ranking: The retrieved samples are ranked by

their distance to the query embedding, with smaller
distances indicating higher similarity [17, 24].
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This end-to-end approach allows for efficient and
accurate identification of malware variants and families
based on their learned functional behaviors.

RESULTS AND DISCUSSION

The application of semantic-aware metric learning to
malware retrieval yields promising results, offering
significant improvements over traditional methods. The
ability to capture subtle behavioral nuances and represent
them in a compact, discriminative embedding space is
transformative for cybersecurity analytics.

Enhanced Retrieval Accuracy and Generalization

. Improved Semantic Grouping: By training deep
models with triplet or contrastive losses, malware
samples performing similar malicious actions, even with
varying code structures or obfuscation, are embedded
closely together. This leads to significantly higher
precision and recall in retrieving functionally related
malware compared to methods based on simple feature
matching or signature analysis [9, 10, 41].

. Robustness to  Obfuscation:  Traditional
signature-based detection methods are highly susceptible
to obfuscation techniques, which modify the syntax of
malware without altering its semantics [3]. Our semantic-
aware approach, by focusing on the behavioral intent
extracted from dynamic analysis or reconstructed
semantic views [6, 7], inherently offers greater resilience
against such evasion tactics. This is a critical advantage
in an arms race where malware authors constantly evolve
their techniques.

. Identification of Novel Variants: The learned
embedding space allows for the detection of previously
unseen malware variants that share semantic
characteristics with known samples, even if they lack an
exact signature match. The model generalizes well to
new, previously unencountered samples that exhibit
behaviors similar to those seen during training, thereby
enhancing zero-day threat detection capabilities. This
enables a more proactive defense posture, moving
beyond purely reactive signature updates.

. Quantitative Performance Metrics: Performance
is typically evaluated using metrics adapted from
information retrieval [16, 34], such as:

0 Mean Average Precision (mAP): A standard
metric for retrieval tasks, averaging the precision values
across all relevant items for each query.

0 Precision@k and Recall@k: Measuring the
proportion of relevant items among the top-k retrieved
results and the proportion of relevant items found within
the top-Kk, respectively.12

pg. 3


https://aimjournals.com/index.php/ijidml

INTERNATIONAL JOURNAL OF INTELLIGENT DATA AND

MACHINE LEARNING (1JIDML)

0 F1-score: A harmonic mean of precision and
recall, providing a balanced measure of performance.13

Experimental results often demonstrate a substantial
uplift in these metrics compared to baseline methods that
do not incorporate semantic-aware metric learning [41,
42].

and Threat

Implications  for

Intelligence

Malware Analysis

The enhanced retrieval
significant implications:

capabilities have several

. Automated Malware Triage and Classification:
Analysts can rapidly identify the family or functional
category of new malware samples by finding similar
known samples in the repository [2, 10, 11]. This
streamlines the triage process and allows for faster initial
assessment.

. Understanding  Malware  Evolution: By
clustering malware based on semantic similarity over
time, researchers can track the evolution of malware
families, identify new attack vectors, and anticipate
future threats. This provides crucial insights for proactive
threat intelligence [1].

. Targeted Incident Response: When an
organization experiences an attack, quickly finding other
similar malware samples can help in understanding the
attack's scope, identifying compromised systems, and
developing effective countermeasures.

. Dataset Enrichment and Curation: The ability to
find highly similar samples can assist in curating cleaner
and more representative datasets for further research and
model training [35, 36].

Challenges and Future Directions

Despite the significant advancements, several challenges
and opportunities for future research exist:

. Scalability of Dynamic Analysis: Performing
dynamic analysis on every incoming malware sample for
large volumes of threats can be computationally
expensive and time-consuming [2]. Future work needs to
explore efficient dynamic analysis techniques or hybrid
static-dynamic approaches.

. Ground Truth Labeling: Obtaining reliable
semantic labels (i.e., true families or behaviors) for large
malware datasets is often challenging and labor-
intensive, requiring expert analysis [35]. Research into
semi-supervised or unsupervised learning techniques for
ground truth generation could be beneficial.

. Concept Drift: Malware behaviors can evolve
rapidly. The learned embeddings might suffer from
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"concept drift," where the definition of "similar" changes
over time. Continuous learning and adaptive model

updating mechanisms are crucial for long-term
effectiveness.
. Interpretability: While deep learning models

achieve high performance, interpreting why two malware
samples are deemed semantically similar by the network
can be challenging [14]. Developing methods for
explaining the learned embeddings and their relation to
specific malicious behaviors would enhance trust and
utility for analysts.

. Integration with Explainable Al: Future research
should focus on integrating explainable Al (XAl)
techniques to provide insights into the decisions made by
the deep metric learning models, helping analysts
understand the underlying semantic features driving
similarity.

. Cross-Platform Malware: The approach needs to
be extended to handle cross-platform malware that
targets multiple operating systems, requiring a unified
semantic representation across different environments.

. Ethical Considerations: Ensuring responsible use
and preventing misuse of powerful malware analysis
tools is paramount.

Further research will focus on developing more robust
and scalable semantic feature extraction methods,
exploring advanced deep metric learning architectures
(e.g., those integrating attention mechanisms), and
building more efficient indexing and retrieval systems for
extremely large malware repositories. The integration
with real-time threat intelligence platforms will also be a
key development.

CONCLUSION

The landscape of cybersecurity is continually reshaped
by the sophisticated evolution of malware.14 In this
dynamic environment, the ability to effectively retrieve
and group malware samples based on their true semantic
similarity is paramount for robust defense. This article
has highlighted the transformative potential of a
semantic-aware metric learning approach, leveraging
deep neural networks to learn discriminative embeddings
of malware behaviors. By moving beyond superficial
code patterns, this method offers superior accuracy and
generalization capabilities, leading to more resilient
malware detection, informed threat intelligence, and
efficient incident response. While challenges related to
data labeling, scalability, and concept drift persist,
ongoing advancements in deep learning and information
retrieval promise to further refine these techniques,
making semantic-aware malware similarity search an
indispensable tool in the continuous battle against cyber
threats.
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