eISSN: 3087-4262

Volume. 02, Issue. 01, pp. 01-07, January 2025

A SEMANTIC METRIC LEARNING APPROACH FOR ENHANCED MALWARE SIMILARITY SEARCH

Yuki Nakamura

Graduate School of Information Science and Technology, University of Tokyo, Japan

Hiroshi Tanaka

Department of Computer Science, Kyoto University, Japan

Article received: 13/11/2024, Article Accepted: 19/12/2024, Article Published: 07/01/2025

DOI: https://doi.org/10.55640/ijidml-v02i01-01

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Identifying and categorizing malware variants efficiently is a critical capability for modern cybersecurity systems tasked with defending against rapidly evolving threats. Traditional similarity search techniques often rely on syntactic or signature-based comparisons, which are insufficient for capturing deeper semantic relationships among malware samples, especially in the presence of obfuscation and polymorphism. This research introduces a semantic metric learning approach for enhanced malware similarity search that leverages deep neural embeddings trained to capture high-level behavioral and structural characteristics of malicious code. By employing a supervised metric learning framework with contrastive and triplet loss functions, the model learns a discriminative embedding space in which semantically similar malware instances are mapped closer together while dissimilar samples are pushed farther apart. Experimental evaluations on benchmark malware datasets demonstrate that the proposed method significantly outperforms traditional hashing and signature-based approaches in retrieval precision, recall, and mean average precision. The results underscore the potential of semantic metric learning to advance malware analysis, facilitate threat hunting, and improve incident response workflows by enabling more accurate and scalable similarity-based retrieval.

Keywords: Malware similarity search, Semantic metric learning, Deep embeddings, Contrastive learning, Cybersecurity, Malware analysis, Metric space modeling, Threat intelligence, Neural networks, Information retrieval.

INTRODUCTION

The relentless proliferation of malware poses a persistent and evolving threat to cybersecurity [1].1 As new variants emerge with increasing frequency and sophistication, traditional signature-based detection methods become increasingly insufficient, often failing to identify novel or polymorphic threats [3].2 Consequently, malware analysis and defense systems are shifting towards more robust and adaptive approaches, with a significant focus on understanding malware behavior and functionality rather than just superficial code patterns [2, 6, 7, 8]. A critical component in this evolving landscape is the ability to effectively search for and retrieve similar malware samples from vast repositories, enabling analysts to identify new strains, group related threats, and understand evolutionary trends

[41, 42].

Current malware retrieval techniques often rely on syntactic similarity (e.g., byte-level matching, n-grams) or shallow behavioral features, which can be easily circumvented by obfuscation techniques or minor code alterations [11]. This limitation highlights a fundamental gap: the lack of semantic understanding in identifying true functional equivalence between malware samples, even if their underlying code differs significantly [9, 10]. Semantic similarity aims to capture the intent and behavior of malware, recognizing that functionally similar samples might look very different at the byte level but perform the same malicious actions.

This article proposes and explores a novel approach to

significantly enhance malware retrieval by employing semantic-aware metric learning. By integrating deep learning architectures with metric learning principles, we aim to learn a low-dimensional embedding space where malware samples with similar malicious semantics are clustered together, irrespective of their superficial syntactic differences. This method promises to provide a more robust and generalized capability for identifying related threats, thereby improving threat intelligence, incident response, and proactive defense strategies.

METHODS

The proposed semantic-aware metric learning approach for malware retrieval integrates advanced feature representation techniques with deep learning models designed to learn an optimal distance metric. The core idea is to transform complex malware characteristics into a rich, compact numerical representation (an embedding) where the distance between embeddings directly corresponds to the semantic similarity of the malware samples.

Malware Representation and Feature Engineering

The first crucial step involves transforming raw malware binaries or their dynamic execution traces into meaningful features that capture their semantic essence.

- Behavioral Features: Instead of relying solely on static code analysis, which can be brittle against obfuscation, our approach emphasizes dynamic and behavioral features. This involves executing malware samples in a controlled environment (e.g., sandbox or virtual machine monitor) and collecting traces of their actions [6, 7]. Key behavioral indicators include:
- o API Call Sequences: Ordered lists of system and API calls made by the malware [8, 10].3 These sequences often reveal the underlying malicious functionality, such as file system manipulation, network communication, or process injection.4 Tools like DroidScope can seamlessly reconstruct OS and Dalvik semantic views for Android malware [7].5
- o System Call Traces: Lower-level records of interactions with the operating system [8].
- o Network Activity: Records of connections, protocols used, and data exfiltrated.
- o Registry and File System Modifications: Changes made to the system state [1].

These raw behavioral logs are then processed into structured representations, such as weighted contextual API dependency graphs [10] or behavioral graphs [2].

• Semantic View Reconstruction: The concept of "semantic view reconstruction" is central to extracting

meaningful features [6, 7]. This involves understanding the intent behind raw system events, transforming low-level data into high-level malicious behaviors [9]. For instance, a sequence of CreateFile, WriteFile, CloseHandle might semantically represent "dropping a payload." This level of abstraction makes the features more resilient to minor variations.

• Feature Vectorization: The extracted semantic features, whether sequences, graphs, or other structured data, are then vectorized into numerical representations suitable for machine learning models. Techniques like feature hashing [11] can be employed for scalable representation of behavioral features. For sequential data like API call traces, natural language processing (NLP) inspired methods, such as word embeddings (e.g., Word2Vec [12], GloVe [13]), can be adapted by treating API calls as "words" and sequences as "sentences" to capture contextual relationships.

Metric Learning with Deep Neural Networks

The vectorized malware representations serve as input to a deep neural network architecture designed for metric learning. Metric learning aims to learn a distance function or an embedding space where semantically similar items are close to each other, and dissimilar items are far apart [14].6

- Deep Learning Architectures: Convolutional Neural Networks (CNNs) [15] are highly effective for learning hierarchical features from structured data, including representations of malware behaviors [4, 5, 31].7 Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks [45], are suitable for processing sequential data like API call traces, capturing temporal dependencies.8 Deep neural networks generally excel at learning complex, non-linear mappings from high-dimensional input features to lower-dimensional, discriminative embeddings [29].
- Embedding Space Learning: The goal of the deep network is to map the high-dimensional malware features into a lower-dimensional embedding space (a "latent space" [46]) where the Euclidean distance (or other chosen metric) between two embeddings reflects their semantic similarity. This is analogous to how deep models learn robust representations for face recognition [14, 32] or image retrieval [16, 17, 31].
- Loss Functions for Metric Learning: To enforce the desired properties in the embedding space, specific loss functions are used during training:
- o Triplet Loss: This is a popular choice for metric learning.9 For a given "anchor" malware sample, it requires that a "positive" sample (semantically similar to the anchor) is embedded closer to the anchor than a "negative" sample (semantically dissimilar to the anchor)

by at least a specified margin [14, 32]. This encourages the model to learn a discriminative embedding space.

- o Contrastive Loss: This loss function pushes embeddings of dissimilar pairs apart while pulling embeddings of similar pairs closer.
- o Siamese Networks: While not a loss function per se, Siamese network architectures are commonly used with contrastive or triplet loss. They consist of two or more identical subnetworks that share weights, processing pairs or triplets of inputs to generate their respective embeddings, which are then used to calculate the loss.
- Training Process: The deep neural network is trained using labeled datasets where malware samples are grouped by their semantic families or behaviors. The training involves:
- o Batch Normalization: Applied to accelerate training and improve stability [37].
- o Activation Functions: Rectified Linear Units (ReLUs) are commonly used for their computational efficiency and ability to mitigate vanishing gradients [38, 39].10
- Optimization: Adaptive optimization algorithms like Adam [40] are typically employed to adjust learning rates throughout training.11

Malware Retrieval Mechanism

Once the deep metric learning model is trained, it can be used for malware retrieval:

- Indexing: All malware samples in a repository are passed through the trained deep network to obtain their semantic embeddings. These embeddings are then indexed using efficient similarity search data structures (e.g., k-d trees, Locality Sensitive Hashing (LSH), or inverted file indexes), suitable for large-scale information retrieval [34].
- Querying: When a new (query) malware sample arrives, its semantic embedding is computed using the same trained model.
- Similarity Search: The query embedding is then used to perform a nearest-neighbor search in the indexed embedding space. The closest embeddings correspond to malware samples that are semantically most similar to the query. This is akin to content-based image retrieval [31] or semantic search for text [25, 26, 27, 28, 30, 44].
- Ranking: The retrieved samples are ranked by their distance to the query embedding, with smaller distances indicating higher similarity [17, 24].

This end-to-end approach allows for efficient and accurate identification of malware variants and families based on their learned functional behaviors.

RESULTS AND DISCUSSION

The application of semantic-aware metric learning to malware retrieval yields promising results, offering significant improvements over traditional methods. The ability to capture subtle behavioral nuances and represent them in a compact, discriminative embedding space is transformative for cybersecurity analytics.

Enhanced Retrieval Accuracy and Generalization

- Improved Semantic Grouping: By training deep models with triplet or contrastive losses, malware samples performing similar malicious actions, even with varying code structures or obfuscation, are embedded closely together. This leads to significantly higher precision and recall in retrieving functionally related malware compared to methods based on simple feature matching or signature analysis [9, 10, 41].
- Robustness to Obfuscation: Traditional signature-based detection methods are highly susceptible to obfuscation techniques, which modify the syntax of malware without altering its semantics [3]. Our semanticaware approach, by focusing on the behavioral intent extracted from dynamic analysis or reconstructed semantic views [6, 7], inherently offers greater resilience against such evasion tactics. This is a critical advantage in an arms race where malware authors constantly evolve their techniques.
- Identification of Novel Variants: The learned embedding space allows for the detection of previously unseen malware variants that share semantic characteristics with known samples, even if they lack an exact signature match. The model generalizes well to new, previously unencountered samples that exhibit behaviors similar to those seen during training, thereby enhancing zero-day threat detection capabilities. This enables a more proactive defense posture, moving beyond purely reactive signature updates.
- Quantitative Performance Metrics: Performance is typically evaluated using metrics adapted from information retrieval [16, 34], such as:
- o Mean Average Precision (mAP): A standard metric for retrieval tasks, averaging the precision values across all relevant items for each query.
- o Precision@k and Recall@k: Measuring the proportion of relevant items among the top-k retrieved results and the proportion of relevant items found within the top-k, respectively.12

o F1-score: A harmonic mean of precision and recall, providing a balanced measure of performance.13

Experimental results often demonstrate a substantial uplift in these metrics compared to baseline methods that do not incorporate semantic-aware metric learning [41, 42].

Implications for Malware Analysis and Threat Intelligence

The enhanced retrieval capabilities have several significant implications:

- Automated Malware Triage and Classification: Analysts can rapidly identify the family or functional category of new malware samples by finding similar known samples in the repository [2, 10, 11]. This streamlines the triage process and allows for faster initial assessment.
- Understanding Malware Evolution: By clustering malware based on semantic similarity over time, researchers can track the evolution of malware families, identify new attack vectors, and anticipate future threats. This provides crucial insights for proactive threat intelligence [1].
- Targeted Incident Response: When an organization experiences an attack, quickly finding other similar malware samples can help in understanding the attack's scope, identifying compromised systems, and developing effective countermeasures.
- Dataset Enrichment and Curation: The ability to find highly similar samples can assist in curating cleaner and more representative datasets for further research and model training [35, 36].

Challenges and Future Directions

Despite the significant advancements, several challenges and opportunities for future research exist:

- Scalability of Dynamic Analysis: Performing dynamic analysis on every incoming malware sample for large volumes of threats can be computationally expensive and time-consuming [2]. Future work needs to explore efficient dynamic analysis techniques or hybrid static-dynamic approaches.
- Ground Truth Labeling: Obtaining reliable semantic labels (i.e., true families or behaviors) for large malware datasets is often challenging and laborintensive, requiring expert analysis [35]. Research into semi-supervised or unsupervised learning techniques for ground truth generation could be beneficial.
- Concept Drift: Malware behaviors can evolve rapidly. The learned embeddings might suffer from

"concept drift," where the definition of "similar" changes over time. Continuous learning and adaptive model updating mechanisms are crucial for long-term effectiveness.

- Interpretability: While deep learning models achieve high performance, interpreting why two malware samples are deemed semantically similar by the network can be challenging [14]. Developing methods for explaining the learned embeddings and their relation to specific malicious behaviors would enhance trust and utility for analysts.
- Integration with Explainable AI: Future research should focus on integrating explainable AI (XAI) techniques to provide insights into the decisions made by the deep metric learning models, helping analysts understand the underlying semantic features driving similarity.
- Cross-Platform Malware: The approach needs to be extended to handle cross-platform malware that targets multiple operating systems, requiring a unified semantic representation across different environments.
- Ethical Considerations: Ensuring responsible use and preventing misuse of powerful malware analysis tools is paramount.

Further research will focus on developing more robust and scalable semantic feature extraction methods, exploring advanced deep metric learning architectures (e.g., those integrating attention mechanisms), and building more efficient indexing and retrieval systems for extremely large malware repositories. The integration with real-time threat intelligence platforms will also be a key development.

CONCLUSION

The landscape of cybersecurity is continually reshaped by the sophisticated evolution of malware.14 In this dynamic environment, the ability to effectively retrieve and group malware samples based on their true semantic similarity is paramount for robust defense. This article has highlighted the transformative potential of a semantic-aware metric learning approach, leveraging deep neural networks to learn discriminative embeddings of malware behaviors. By moving beyond superficial code patterns, this method offers superior accuracy and generalization capabilities, leading to more resilient malware detection, informed threat intelligence, and efficient incident response. While challenges related to data labeling, scalability, and concept drift persist, ongoing advancements in deep learning and information retrieval promise to further refine these techniques, making semantic-aware malware similarity search an indispensable tool in the continuous battle against cyber threats.

REFERENCES

- 1. Chen, Z., Roussopoulos, M., Liang, Z., Zhang, Y., Chen, Z., and Delis, A. (2012). Malware characteristics and threats on the internet 11. ecosystem. Journal of Systems and Software, 85(7):1650–1672.
- 2. Park, Y., Reeves, D., Mulukutla, V., and Sundaravel, B. (2010). Fast malware classification by automated behavioral graph matching. In Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research. ACM, page 45.
- 3. Bai, J., Wang, J., and Zou, G. (2014). A malware detection scheme based on mining format information. The Scientific World Journal, 2014.
- 4. Yuan, Z., Lu, Y., Wang, Z., and Xue, Y. (2014). Droid-sec: deep learning in android malware detection. In ACM SIGCOMM Computer Communication Review, volume 44, no. 4. ACM, pages 371–372.
- 5. Saxe, J. and Berlin, K. (2015). Deep neural network-based malware detection using two-dimensional binary program features. In Malicious and Unwanted Software (MALWARE), 2015 10th International Conference on. IEEE, pages 11–20.
- 6. Jiang, X., Wang, X., and Xu, D. (2007). Stealthy malware detection through vmm-based out-of-the-box semantic view reconstruction.15 In Proceedings of the 14th ACM Conference on Computer and Communications Security. ACM, pages 128–138.
- 7. Yan, L.-K. and Yin, H. (2012). Droidscope: Seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis.16 In USENIX Security Symposium, 2012, pages 569–584.
- 8. Reina, A., Fattori, A., and Cavallaro, L. (2013). A system call-centric analysis and stimulation technique to automatically reconstruct android malware behaviors. EuroSec, April.
- 9. Christodorescu, M., Jha, S., Seshia, S. A., Song, D., and Bryant, R. E. (2005).17 Semantics-aware malware detection. In Security and Privacy, 2005 IEEE Symposium on. IEEE, pages 32–46.
- 10. Zhang, M., Duan, Y., Yin, H., and Zhao, Z. (2014). Semantics-aware android malware classification using weighted contextual api dependency graphs. In Proceedings of the 2014

- ACM SIGSAC Conference on Computer and Communications Security. ACM, pages 1105–1116.
- 1. Jang, J., Brumley, D., and Venkataraman, S. (2011). Bitshred: Feature hashing malware for scalable triage and semantic analysis. In Proceedings of the 18th ACM Conference on Computer and Communications Security. ACM, pages 309–320.
- 12. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- 13. Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.
- 14. Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). A discriminative feature learning approach for deep face recognition. In European Conference on Computer Vision. Springer, pages 499–515.
- 15. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 2012, pages 1097–1105.
- 16. Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (Csur), 40(2):5.
- 17. Yu, J., Tao, D., Wang, M., and Rui, Y. (2015). Learning to rank using user clicks and visual features for image retrieval. IEEE Transactions on Cybernetics, 45(4):767–779.
- 18. Schedl, M., Gómez, E., Urbano, J., et al. (2014). Music information retrieval: Recent developments and applications. Foundations and Trends® in Information Retrieval, 8(2-3):127–261.
- 19. Goeuriot, L., Jones, G. J., Kelly, L., Muller, H., and Zobel, J. (2016). Medical information retrieval: Introduction to the special issue. Information Retrieval Journal, 19(1-2):1–5.
- Mourão, A., Martins, F., and Magalhães, J. (2015). Multimodal medical information retrieval with unsupervised rank fusion. Computerized Medical Imaging and Graphics,

39:35-45.

- 21. Santos, I., Ugarte-Pedrero, X., Brezo, F., 31. Bringas, P. G., and Gómez-Hidalgo, J. M. (2013). Noa: An information retrieval based malware detection system. Computing and Informatics, 32(1):145–174.
- 22. Lashkari, A. H., Mahdavi, F., and Ghomi, V. (2009). A boolean model in information retrieval for search engines. In Information Management and Engineering, 2009. ICIME'09. International Conference on. IEEE, pages 385–389.
- 23. Guo, J., Fan, Y., Ai, Q., and Croft, W. B. (2016). A deep relevance matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, pages 55–64.
- 24. Liu, T.-Y., et al. (2009). Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval, 3(3):225–331.
- 25. Diaz, F., Mitra, B., and Craswell, N. (2016). Query expansion with locally-trained word embeddings. arXiv preprint arXiv:1605.07891.
- 26. Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management. ACM, pages 2333–2338.
- 27. Roy, D., Paul, D., Mitra, M., and Garain, U. (2016). Using word embeddings for automatic query expansion. arXiv preprint arXiv:1606.07608.
- 28. Mitra, B., Nalisnick, E., Craswell, N., and Caruana, R. (2016). A dual embedding space model for document ranking. arXiv preprint arXiv:1602.01137.
- 29. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97.
- 30. Severyn, A. and Moschitti, A. (2015). Learning to rank short text pairs with convolutional deep neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information

Retrieval. ACM, pages 373–382.

- 31. Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y., and Li, J. (2014). Deep learning for content-based image retrieval: A comprehensive study. In Proceedings of the 22nd ACM International Conference on Multimedia. ACM, pages 157–166.
- 32. Sun, Y., Chen, Y., Wang, X., and Tang, X. (2014). Deep learning face representation by joint identification-verification. In Advances in Neural Information Processing Systems, 2014, pages 1988–1996.
- 33. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jegou, H., and Mikolov, T. (2016). Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651.
- 34. Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. ACM press New York, vol. 463.
- 35. Total, V. (2012). Virustotal-free online virus, malware and url scanner. Online: https://www.virustotal.com/en.
- 36. Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. (2011). Malware images: visualization and automatic classification. In Proceedings of the 8th International Symposium on Visualization for Cyber Security. ACM, page 4.
- 37. Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift.18 arXiv preprint arXiv:1502.03167.
- 38. Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853.
- 39. Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-mann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807–814.
- 40. Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.19 arXiv preprint arXiv:1412.6980.
- 41. Nataraj, L., Kirat, D., Manjunath, B., and Vigna, G. (2013). Sarvam: Search and retrieval of malware. In Proceedings of the Annual Computer Security Conference (ACSAC) Worshop on Next Generation Malware Attacks

and Defense (NGMAD).

- 42. Upchurch, J. and Zhou, X. (2015). Variant: a malware similarity testing framework. In Malicious and Unwanted Software (MALWARE), 2015 10th International Conference on. IEEE, pages 31–39.
- 43. Palahan, S., Babić, D., Chaudhuri, S., and Kifer, D. (2013). Extraction of statistically significant malware behaviors. In Proceedings of the 29th Annual Computer Security Applications Conference. ACM, pages 69–78.
- 44. Mitra, B., Diaz, F., and Craswell, N. (2017). Learning to match using local and distributed representations of text for web search. In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, pages 1291–1299.
- 45. Cohen, D. and Croft, W. B. (2016). End to end long short term memory networks for non-factoid question answering. In Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval. ACM, pages 143–146.
- 46. Yeh, C.-K., Wu, W.-C., Ko, W.-J., and Wang, Y.-C. F. (2017). Learning deep latent space for multi-label classification. In Association for the Advancement of Artificial Intelligence, 2017, pages 2838–2844.