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ABSTRACT 
 

Regression analysis in data streams presents unique challenges due to the continuous, potentially infinite nature of the 
data and the phenomenon of concept drift, where the underlying data distribution or the relationship between variables 
changes over time. Traditional static regression models are ill-equipped to handle such dynamic environments. Adaptive 
linear filtering techniques offer a powerful paradigm for regression in data streams, allowing models to evolve and adjust 
to changing patterns. This article explores the application of linear adaptive filtering methods for regression tasks in data 
stream settings. We discuss the fundamental principles of adaptive filtering, common algorithms like Recursive Least 
Squares (RLS) and its variants, and their suitability for handling concept drift. By reviewing relevant literature on data 
stream mining, adaptive learning, and regression techniques, we highlight the advantages of using adaptive linear models, 
including their computational efficiency, ability to track changing relationships, and theoretical foundations in signal 
processing. While acknowledging limitations such as sensitivity to parameter choices and potential issues with non-linear 
relationships, this article argues that linear adaptive filtering provides a robust and efficient foundation for performing 
regression in dynamic data stream environments, serving as a crucial component in more complex adaptive learning 
systems. 

Keywords: Adaptive Filtering, Linear Regression, Data Streams, Concept Drift, Recursive Least Squares, Online Learning, 
Evolving Data, Machine Learning. 

 

INTRODUCTION 

The proliferation of sensors, interconnected devices, and 

online services has led to the generation of vast amounts 

of data in the form of continuous, high-speed streams [5, 

12]. Analyzing these data streams in real-time or near 

real-time is essential for various applications, including 

fraud detection, network monitoring, financial analysis, 

and predictive maintenance [3, 5]. Regression, the task of 

predicting a continuous target variable based on a set of 

input features, is a fundamental analytical technique 

required in many of these streaming scenarios [9, 11]. 

Traditional regression models, such as standard linear 

regression or batch-trained machine learning models, 

operate under the assumption that the data distribution 

is static [31]. However, data streams are inherently 

dynamic. The relationships between variables can 

change over time, a phenomenon known as concept drift 

[8]. For example, the factors influencing traffic volume on 

a highway [15] or the predictors of energy consumption 

in a building can evolve due to external factors, 

seasonality, or underlying system changes. Static models 

trained on historical data quickly become outdated and 

perform poorly in the presence of drift. 

Adaptive learning techniques are designed to address 

this challenge by allowing models to continuously update 

and adjust as new data arrives [3, 8]. Adaptive filtering, a 

field with deep roots in signal processing, provides a 

powerful framework for developing models that can learn 

and track time-varying parameters [13, 19, 29]. Linear 

adaptive filters, in particular, offer computationally 

efficient methods for estimating the coefficients of a linear 

model that changes over time [13, 25, 29]. 

While more complex adaptive methods, including 

ensemble techniques [9, 10, 11], adaptive decision trees 

[16, 17, 18], and adaptive instance-based methods [21, 

26], have been developed for data streams, linear adaptive 

filtering provides a foundational and often highly effective 

approach for regression tasks, especially when the 

underlying relationships are approximately linear or can 

be linearized. Its efficiency makes it suitable for high-

speed data environments [5]. 

This article explores the application of linear adaptive 

filtering techniques for performing regression in evolving 

data streams. We will delve into the core concepts, discuss 

prominent algorithms, and highlight their advantages and 

considerations in the context of concept drift. By drawing 

upon literature from adaptive filtering, data stream 

mining, and machine learning, we aim to demonstrate the 

relevance and utility of this approach for building dynamic 

regression models capable of handling the challenges of 

continuous, changing data. 

2. Methods 
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The application of linear adaptive filtering for regression 

in data streams involves formulating the regression 

problem within an adaptive framework and employing 

algorithms that can continuously update model 

parameters as new data instances arrive. This section 

outlines the core methodology. 

2.1. Problem Formulation 

In a data stream regression setting, we receive a 

sequence of data instances (xt,yt) over time t=1,2,…, 

where xt is a vector of input features at time t, and yt is 

the corresponding continuous target variable. The goal is 

to learn a model f(xt) that predicts yt, where the 

relationship between xt and yt may change over time due 

to concept drift [8]. A linear adaptive filter assumes a 

linear relationship: 

𝑦^𝑡 = 𝑤𝑡𝑇𝑥𝑡 

where y^t is the predicted value of yt, xt is the input 

feature vector (potentially including a bias term), and wt 

is the vector of model coefficients (weights) that are 

updated at each time step t. 

2.2. Adaptive Filtering Algorithms 

The core of the method lies in the adaptive algorithm 

used to update the weight vector wt. These algorithms 

aim to minimize an error criterion, typically the squared 

prediction error (yt−y^t)2, as each new data instance 

becomes available. 

• Least Mean Squares (LMS): A fundamental 

adaptive filtering algorithm [29]. The weight 

vector is updated iteratively in the direction that 

reduces the instantaneous squared error: 

𝑤𝑡 + 1 = 𝑤𝑡 + 𝜇(𝑦𝑡 − 𝑦^𝑡)𝑥𝑡 

where μ is the learning rate, a small positive constant 

that controls the step size of the adaptation. LMS is 

computationally simple but can be slow to converge and 

sensitive to the learning rate choice. 

• Recursive Least Squares (RLS): RLS algorithms 

aim to minimize the sum of squared errors over 

a window of past data, often using exponential 

weighting to give more importance to recent 

data [4, 13, 20, 25]. The standard RLS update 

equations involve matrix operations, including 

matrix inversion or its inverse update using the 

matrix inversion lemma [27]: 

𝑃𝑡 = 𝜆1(𝑃𝑡 − 1 − 1𝜆 + 𝑥𝑡𝑇𝑃𝑡 − 1𝑥𝑡𝑃𝑡 − 1𝑥𝑡𝑥𝑡𝑇𝑃𝑡

− 1) 

𝑘𝑡 = 𝑃𝑡𝑥𝑡 

𝑤𝑡 = 𝑤𝑡 − 1 + 𝑘𝑡(𝑦𝑡 − 𝑦^𝑡) 

where λ is the forgetting factor (0<λ≤1), controlling the 

exponential weighting of past data. A smaller λ makes the 

algorithm more adaptive to recent changes but also more 

sensitive to noise. Pt is related to the inverse of the input 

correlation matrix. RLS is generally faster to converge and 

more effective at tracking concept drift than LMS but is 

computationally more expensive due to matrix 

operations. 

 Exponentially Weighted Least Squares (EWLS): 

This is closely related to RLS with a forgetting factor, 

explicitly minimizing the exponentially weighted sum of 

squared errors [4, 20]. The recursive updates are 

equivalent to RLS with exponential forgetting. 

 Variants and Extensions: Numerous variants of 

LMS and RLS exist to improve performance, robustness, or 

computational efficiency, such as Normalized LMS (NLMS) 

or approximations for large-scale data [13]. 

2.3. Handling Concept Drift 

Adaptive linear filters inherently handle concept drift by 

continuously updating their parameters [8]. The forgetting 

factor λ in RLS (or the learning rate μ in LMS) plays a 

crucial role in the model's ability to adapt. A smaller λ (or 

larger μ) allows the model to quickly adjust to new 

concepts but can lead to instability or over-sensitivity to 

noise. Conversely, a larger λ (or smaller μ) provides 

smoother estimates but makes the model slower to adapt 

to significant changes. 

While basic adaptive filters continuously update, more 

sophisticated drift detection mechanisms can be 

integrated [8, 22]. These mechanisms monitor the model's 

performance (e.g., prediction error) and signal when a 

significant change (drift) is detected. Upon detecting drift, 

the adaptive filter's parameters (like λ or μ) could be 

adjusted, or the model could be partially or fully reset. 

However, standard linear adaptive filters like EWLS/RLS 

are often used without explicit drift detection, relying 

solely on the forgetting factor for continuous adaptation. 

2.4. Evaluation 

Evaluating adaptive regression models on data streams 

requires specific methodologies [7]. Unlike batch learning 
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where a single test set is used, evaluation in data streams 

is typically performed using a prequential (or interleaved 

test-then-train) approach. Each incoming data instance is 

first used to test the current model's performance (e.g., 

calculating the squared error), and then it is used to 

update the model. Performance metrics, such as Mean 

Squared Error (MSE) or Root Mean Squared Error 

(RMSE), are calculated incrementally over time or over a 

sliding window to assess the model's performance as it 

adapts to the stream. Cumulative metrics can also be used 

to evaluate overall performance. 

3. Results (Expected Outcomes and Properties) 

Applying linear adaptive filtering techniques for 

regression in data streams is expected to yield models 

with specific properties and performance characteristics, 

particularly in comparison to static linear models. Based 

on the principles of adaptive filtering and existing 

literature, the following results and outcomes are 

anticipated: 

3.1. Ability to Track Changing Linear Relationships 

The primary expected result is that linear adaptive filters, 

especially those employing exponential forgetting like 

RLS/EWLS [4, 13, 20, 25], will effectively track changes 

in the underlying linear relationship between input 

features and the target variable in a data stream. As the 

true coefficients of the linear model drift over time, the 

adaptive filter's estimated coefficients wt are expected to 

converge towards the current optimal values, provided 

the rate of adaptation (controlled by λ or μ) is 

appropriately matched to the rate of concept drift [8]. 

This contrasts sharply with static linear regression, 

where the model parameters remain fixed after initial 

training, leading to degraded performance in the 

presence of drift. 

3.2. Continuous Learning and Adaptation 

Linear adaptive filters facilitate continuous learning [3, 8, 

12]. With each new data instance, the model parameters 

are updated. This ensures that the model is always 

learning from the most recent data, making it suitable for 

environments where data arrives sequentially and the 

underlying patterns are non-stationary. This is a 

fundamental advantage over batch learning methods that 

require periodic retraining on accumulated data, which 

can be computationally expensive and introduce latency. 

3.3. Computational Efficiency (Relative to Complex 

Models) 

Compared to more complex adaptive models for data 

streams, such as adaptive ensembles of non-linear 

models [9, 10, 11], adaptive decision trees [16, 17, 18], or 

adaptive instance-based methods [21, 26], linear 

adaptive filters like LMS and RLS offer relatively high 

computational efficiency per data instance. LMS is 

particularly lightweight, involving simple vector updates. 

While RLS involves matrix operations, its recursive 

nature and the use of the matrix inversion lemma [27] 

make it significantly more efficient than recomputing the 

least squares solution from scratch on a sliding window of 

data [4, 13, 20, 25]. This efficiency is crucial for processing 

high-speed data streams [5]. 

3.4. Predictable Performance in Linear or Approximately 

Linear Scenarios 

In scenarios where the underlying relationship between 

variables is truly linear or can be reasonably 

approximated by a linear model that changes over time, 

linear adaptive filters are expected to provide accurate 

and stable predictions. Their performance is theoretically 

well-understood in such settings [13, 19]. 

3.5. Basis for More Complex Adaptive Systems 

Linear adaptive filters can serve as foundational 

components within more complex adaptive learning 

systems for data streams. For example, they can be used as 

the base learners in adaptive ensembles [9, 10, 11] or as 

components within adaptive model trees [16, 17]. Their 

efficiency allows them to be combined effectively to handle 

more complex relationships or detect drift. 

3.6. Sensitivity to Parameter Choice 

A key result is that the performance of linear adaptive 

filters is highly sensitive to the choice of adaptation 

parameters, particularly the learning rate μ for LMS or the 

forgetting factor λ for RLS [4, 13, 29]. An inappropriate 

choice can lead to slow adaptation (missing drift) or 

instability (over-sensitivity to noise). Finding the optimal 

parameter often requires experimentation or the use of 

adaptive parameter tuning techniques. 

3.7. Limitations with Strongly Non-Linear Relationships 

While effective for linear or approximately linear 

relationships, linear adaptive filters will struggle to 

accurately model strongly non-linear relationships, even if 

those relationships are static or changing. In such cases, 

non-linear adaptive methods or transformations of the 

input features would be necessary [23]. 

These expected results highlight the strengths and 

limitations of linear adaptive filtering for regression in 

data streams. They provide a foundation for 

understanding when and how these techniques can be 

effectively applied. 

4. DISCUSSION AND CONCLUSION 

The challenge of performing regression in evolving data 

streams, where the underlying relationships between 

variables can change over time, necessitates the use of 

adaptive learning techniques. Linear adaptive filtering 

offers a powerful and efficient paradigm for addressing 

this challenge, providing models that can continuously 

adjust to new data and track concept drift. 

As discussed, linear adaptive filters, particularly variants 

of Recursive Least Squares with exponential forgetting [4, 
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13, 20, 25], are expected to effectively track changes in 

linear or approximately linear relationships within data 

streams. Their ability to continuously update parameters 

as new data arrives ensures that the model remains 

relevant in dynamic environments, a critical advantage 

over static regression methods [31]. The computational 

efficiency of algorithms like LMS and RLS makes them 

well-suited for processing the high-speed, potentially 

infinite data volumes characteristic of data streams [5, 

12]. 

Furthermore, linear adaptive filters can serve as 

fundamental building blocks for more sophisticated 

adaptive learning systems [9, 10, 11, 16, 17]. Their 

simplicity and efficiency allow them to be readily 

integrated into ensemble methods or hierarchical 

structures designed to handle more complex forms of 

concept drift or non-linear relationships. 

However, it is crucial to acknowledge the limitations. The 

performance of linear adaptive filters is highly 

dependent on the appropriate selection of adaptation 

parameters (e.g., forgetting factor λ) [4, 13, 29]. Tuning 

these parameters can be challenging and often requires 

domain knowledge or empirical evaluation on 

representative data streams. Moreover, linear adaptive 

filters are inherently limited to modeling linear 

relationships. While feature engineering or 

transformations can sometimes linearize non-linear 

problems, strongly non-linear dynamics may require the 

use of non-linear adaptive methods [23, 26]. 

Future research in this area could explore methods for 

automatically tuning the adaptation parameters of linear 

adaptive filters in response to detected concept drift [8, 

22]. Investigating hybrid approaches that combine the 

efficiency of linear adaptive filters with the modeling 

power of non-linear techniques, perhaps within an 

ensemble framework, could also be a fruitful direction [9, 

10, 11]. Furthermore, applying these techniques to a 

wider variety of real-world data streams and analyzing 

their performance under different types and rates of 

concept drift would provide valuable empirical evidence 

of their effectiveness. 

In conclusion, linear adaptive filtering provides a robust, 

efficient, and theoretically grounded approach for 

performing regression in evolving data streams. While 

not a panacea for all data stream regression problems, 

particularly those involving strongly non-linear 

relationships, its ability to continuously adapt and track 

changing linear patterns makes it an indispensable tool 

in the data stream mining toolkit. As data streams 

continue to grow in volume and complexity, adaptive 

linear models will remain a crucial component in the 

development of intelligent systems capable of learning 

and making predictions in dynamic, real-world 

environments. 
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