eISSN: 3087-4297

Volume. 02, Issue. 08, pp. 01-08, August 2025"

Navigating the Digital Battlefield: A Systematic Review of Collateral Effects in Offensive Cyber Operations

Dr. Alistair Finch

Centre for Security and Conflict Studies, King's College, London, United Kingdom

Article received: 05/06/2025, Article Revised: 06/07/2025, Article Accepted: 01/08/2025

DOI: https://doi.org/10.55640/ijctisn-v02i08-01

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Background: As nations increasingly integrate Offensive Cyber Operations (OCO) into their military and strategic arsenals [3, 15], the risk of unintended consequences and collateral damage to non-targeted systems and populations grows. Unlike conventional warfare, the interconnected and often ambiguous nature of cyberspace complicates the prediction, control, and assessment of these secondary effects [4, 11].

Objective: This systematic literature review aims to synthesize and analyze the existing doctrinal, legal, and academic literature to provide a comprehensive understanding of collateral effects in OCO. It seeks to define the problem, evaluate the applicability of traditional legal and military principles, and identify current methodologies for risk assessment.

Methods: A systematic review of 17 foundational sources was conducted. The selected literature includes peer-reviewed articles, key government reports, and military doctrine. A thematic analysis approach was employed to extract and synthesize data concerning definitions, legal frameworks (e.g., Law of Armed Conflict), strategic principles (e.g., distinction, proportionality), and assessment models [8, 16, 17].

Results: The analysis reveals three key themes. First, a significant gap exists between the doctrinal imperative to minimize collateral damage and the practical ability to do so in complex cyber-physical environments [7, 10]. Second, core principles of international law, such as distinction and proportionality, are exceptionally difficult to apply in OCO due to the shared nature of digital infrastructure [14]. Third, while nascent methodologies for assessing collateral damage exist [17], they are not yet widely adopted or sufficiently mature to address the full spectrum of potential unintended consequences.

Conclusion: The current understanding and management of collateral effects in OCO are dangerously underdeveloped. This review highlights an urgent need for more robust assessment frameworks, refined legal interpretations, and greater strategic foresight to mitigate the potentially catastrophic ripple effects of digital warfare.

KEYWORDS

Offensive Cyber Operations, Collateral Damage, International Law, Law of Armed Conflict (LOAC), Targeting, Systematic Literature Review, Cyber Warfare.

INTRODUCTION

The 21st century has witnessed the rise of cyberspace as a critical domain for global commerce, communication, and governance. It has simultaneously emerged as a new and increasingly contested battlefield, a domain where the lines between peace and conflict are perpetually blurred. The global cybersecurity market, projected to be a \$2 trillion opportunity, underscores the immense

economic value intertwined with digital infrastructure, while the escalating costs of data breaches—averaging millions of dollars per incident—highlight its profound vulnerabilities [1, 2]. In this environment, nations have moved beyond purely defensive postures to develop and operationalize Offensive Cyber Operations (OCO) as a potent instrument of national power. States like Australia have openly articulated policies for employing offensive

cyber capabilities to deter adversaries and shape the strategic environment, reflecting a global trend towards the militarization of cyberspace [3].

However, the integration of OCO into statecraft presents a formidable challenge: the high probability of unintended and far-reaching consequences. Unlike kinetic warfare, where effects are often geographically constrained, cyber operations can propagate uncontrollably through the interconnected global network, causing extensive collateral damage. The 2010 Stuxnet worm, widely attributed to a state-sponsored campaign to disrupt Iran's nuclear program, serves as a seminal example. While surgically designed to damage specific centrifuges, its code escaped the target facility and spread globally, infecting systems far beyond its intended scope and revealing a powerful new class of weapon to the world [4]. Similarly, wide-ranging cyber campaigns attributed to North Korean military hackers, intended to generate revenue and disrupt adversaries, have caused massive, indiscriminate damage, as exemplified by the WannaCry ransomware attack that crippled health systems, businesses, and infrastructure across the globe [5]. These incidents demonstrate that OCO, once unleashed, can create ripple effects that are difficult to predict, control, or contain, posing a grave risk to international stability and the civilian infrastructure upon which modern society depends.

To analyze this complex problem, a clear understanding of its core concepts is essential. Offensive Cyber Operations (OCO) are defined as operations intended to project power by the application of force in or through cyberspace [15]. They involve the use of cyber capabilities to disrupt, deny, degrade, or destroy targeted computer systems or networks [3]. The term collateral damage, inherited from the lexicon of conventional warfare, refers to the unintentional or incidental injury or damage to persons or objects that would be protected from direct attack under applicable international law [16]. In the context of cyberspace, this concept is expanded to include unintended damage to civilian data, networks, and services that are not legitimate military targets [11, 13]. Foundational strategic thought from the Cold War, such as Thomas Schelling's work on dispersal and damage, provides a theoretical lens for understanding how the threat of widespread, unintended harm can shape strategic calculations and deterrence [6]. The challenge is magnified by the proliferation of Cyber-Physical Systems (CPS), which are integrations of computation, networking, and physical processes [10]. As critical infrastructure—including power grids, water treatment transportation and networks—becomes increasingly reliant on CPS, the potential for an OCO to spill over from the digital realm to cause catastrophic physical destruction grows exponentially.

Despite the clear and present danger posed by collateral effects, a systematic and integrated understanding of the

issue remains elusive. While military doctrine has long included processes for Collateral Damage Estimation (CDE) in kinetic operations [7], these frameworks are illsuited for the unique characteristics of cyberspace. The speed, anonymity, and interconnectedness of the digital domain challenge traditional models of targeting and effects-based assessment. This systematic literature review is therefore necessary to synthesize the disparate of knowledge from military strands international law, technical studies, and strategic analysis. By consolidating what is known about the nature, assessment, and mitigation of collateral effects in OCO, this paper aims to provide a coherent foundation for policymakers, military commanders, and researchers to address this critical gap in national and international security.

This review is guided by a primary research question: What does the existing academic and doctrinal literature reveal about the nature, assessment, and mitigation of collateral effects resulting from Offensive Cyber Operations? To answer this, the paper pursues four key objectives: (1) to synthesize definitions categorizations of cyber collateral damage; (2) to analyze the application of traditional principles of warfare, such as distinction and proportionality, to OCO; (3) to identify documented methodologies for assessing the risk of collateral damage; and (4) to highlight critical gaps in the current body of literature that demand further research.

The remainder of this article is structured according to the IMRaD format. The Methods section details the systematic literature review methodology used to identify and analyze the 17 core sources for this study. The Results section presents a thematic synthesis of the findings from the literature, focusing on doctrinal frameworks, the characterization of collateral damage, the application of legal principles, and assessment methodologies. The Discussion section interprets these findings, analyzing the gap between doctrine and practice, identifying limitations in the current literature, and exploring the implications for policy and future research. Finally, the Conclusion summarizes the key arguments and reiterates the urgent need for greater foresight and restraint in the conduct of digital warfare.

METHODS

To address the research questions in a rigorous and transparent manner, this study employed a Systematic Literature Review (SLR) methodology. An SLR is a research method that collects and critically analyzes multiple research studies or papers. This approach was chosen over a traditional narrative review to provide a comprehensive, replicable, and unbiased summary of the existing literature on collateral effects in Offensive Cyber Operations (OCO). By systematically identifying, selecting, and synthesizing the available evidence, the SLR methodology minimizes bias and provides a robust

foundation for understanding the state of the field, identifying gaps, and informing future research.

The identification of relevant literature began with a comprehensive search strategy targeting multiple source types to ensure a holistic view of the topic. Searches were conducted in major academic databases, including Scopus, IEEE Xplore, and JSTOR, which are prominent repositories for computer science, engineering, and security studies literature. In addition to academic sources, targeted searches were performed on the websites of key governmental and non-governmental organizations known for producing authoritative work in this area, including the U.S. Department of Defense, the RAND Corporation, and the NATO Cooperative Cyber Defence Centre of Excellence (CCDCOE), publisher of the Tallinn Manual. The search strategy utilized a combination of keywords and their variants, structured to capture the core concepts of the research. The primary search terms included: "offensive cyber", "cyber warfare", "collateral damage", "unintended effects", "collateral effects", "international law", "targeting", "proportionality", and "distinction". These terms were used in various combinations to refine the search and ensure all relevant facets of the topic were covered.

The initial search yielded a large volume of potential sources. To distill this into a manageable and highly relevant set of documents, a strict set of inclusion and exclusion criteria was applied. The inclusion criteria were designed to select foundational and directly relevant works. Included sources were required to be: (1) peerreviewed academic articles, books, or conference proceedings; (2) official government or military doctrine and manuals; or (3) seminal think-tank reports from highly reputable organizations. Furthermore, the content of the sources had to directly address the strategic, legal, technical, or policy dimensions of collateral effects, unintended consequences, or the application of the Law of War to OCO. The exclusion criteria were applied to filter out sources that were not central to the research question. Excluded items included: (1) sources focused purely on defensive cybersecurity measures without addressing offensive operations; (2) news reports or iournalistic articles that lacked in-depth analysis; (3) purely technical reports on specific vulnerabilities that did not provide strategic or legal context; and (4) sources published before 1990, to focus on the modern era of cyberspace. This filtering process resulted in the final selection of the 17 sources that form the basis of this review.

Once the final corpus of 17 sources was established, a process of data extraction and thematic synthesis was undertaken. Each document was read in its entirety and systematically analyzed to extract relevant information. A data extraction form was used to ensure consistency, capturing key details from each source, including its definition of core concepts (e.g., OCO, collateral

damage), discussion of legal principles, presentation of case studies or examples, and description of any proposed frameworks or methodologies for assessment and mitigation. Following the extraction phase, a thematic synthesis approach was used to analyze the collected data. This involved identifying recurrent themes, concepts, and arguments across the different sources. The identified themes were then organized into a coherent analytical framework, which forms the structure of the Results section of this paper. This process allowed for the integration of diverse perspectives from law, military doctrine, and technical studies into a unified analysis.

Finally, it is important to acknowledge the limitations of this methodology. The primary limitation is the reliance on publicly available information. A significant portion of the planning, execution, and effects assessment of realworld OCO is highly classified. As such, this review is based on the unclassified body of academic and doctrinal literature and cannot capture the full scope of state practice. Secondly, the scope of the review is defined by the 17 selected sources. While these were chosen to be foundational and representative, they do not constitute an exhaustive list of every piece of writing on the topic. The findings and conclusions of this paper are therefore bound by the information contained within this specific corpus of literature. Despite these limitations, the systematic methodology employed provides a rigorous and transparent foundation for the analysis presented in the following sections.

RESULTS

The thematic analysis of the 17 selected sources reveals a complex and often fragmented landscape of knowledge regarding collateral effects in Offensive Cyber Operations (OCO). The findings from the literature are organized here into four principal themes: (1) the existing doctrinal and legal frameworks that govern targeting; (2) the challenges in defining and characterizing the unique nature of cyber collateral damage; (3) the difficulties in applying the core Law of War principles of distinction and proportionality to OCO; and (4) the nascent state of methodologies for assessing and mitigating the risk of unintended consequences.

1. Theme 1: Doctrinal and Legal Frameworks for Targeting

The literature shows a clear attempt to extend traditional, kinetic-based military doctrine to the cyber domain, but this adaptation is fraught with challenges. U.S. military doctrine, articulated in publications from the Air Force and the Department of Defense (DoD), provides a highly structured, six-phase targeting cycle designed to achieve military objectives while adhering to legal and ethical constraints [7, 16]. This process includes detailed procedures for Collateral Damage Estimation (CDE), which involves analyzing the potential for unintended

harm to civilian populations and infrastructure. The Intelligence Targeting Guide from 1998, for instance, outlines specific methodologies for calculating potential damage to non-combatants and dual-use infrastructure, demonstrating a long-standing doctrinal emphasis on precision and the minimization of collateral harm [12]. The DoD's Law of War Manual further codifies this, stating unequivocally that commanders must take feasible precautions to reduce the risk of incidental harm to civilians and civilian objects [16].

However, the literature strongly suggests that these conventional frameworks are inadequate for the realities of cyberspace. The very nature of the digital domain—its interconnectedness, the commingling of military and civilian data and infrastructure, and the difficulty in predicting the propagation path of malware—fundamentally challenges a targeting process designed for the physical world. An effect in one part of the network can cascade in unforeseen ways, rendering traditional CDE models based on blast radii and fragmentation patterns obsolete [11, 13].

Juxtaposed with this national military doctrine is the body of international law, which seeks to provide a universal framework for state conduct. The most authoritative effort to interpret how existing international law applies to cyberspace is the Tallinn Manual 2.0 on the International Law Applicable to Cyber Operations [8]. Produced by a group of international legal experts at the behest of the NATO CCDCOE, the manual represents a significant consensus on applying the Law of Armed Conflict (LOAC) to cyber warfare. It affirms that foundational principles such as military necessity, distinction, proportionality, and humanity are fully applicable to OCO. The manual meticulously examines how these rules govern targeting, defining what constitutes a lawful target and outlining the legal requirements to avoid or minimize collateral damage. However, the Tallinn Manual 2.0 also highlights the profound legal ambiguities that arise in the cyber context, such as determining when a data set can be considered a military objective or how to assess the "excessiveness" of an attack in relation to its anticipated military advantage. Thus, while both military doctrine and international law provide formal frameworks for governing targeting, a significant gap exists between their principles and the practical realities of executing and controlling operations in the digital domain.

2. Theme 2: Defining and Characterizing Cyber Collateral Damage

A central challenge identified across the literature is the difficulty of defining and categorizing the unique forms of damage that can result from OCO. The foundational work on this topic by Romanosky and Goldman provides a critical vocabulary for analysis [11, 13]. They define cyber collateral damage as the "unintended adverse

effects of a cyber operation on entities that were not the intended target" [13]. They further develop a typology to distinguish between different forms of damage. This includes damage to "in-group" entities (allies or friendly "out-group" entities (neutrals forces), belligerents). and the "commons" (the shared infrastructure of the internet itself, such as routing protocols or domain name systems). This framework moves beyond a simple civilian/military dichotomy to capture the complex web of relationships in cyberspace.

The literature emphasizes that the effects of OCO are not merely technical; they can be physical, economic, and social. The early visionaries of cyber warfare, Arquilla and Ronfeldt, predicted that conflicts in the "infosphere" would target the minds of adversaries and the fabric of society itself, a prediction that has proven prescient [9]. The Stuxnet attack, for example, did not just corrupt software; it caused physical destruction of industrial equipment [4]. The North Korean WannaCry attack caused immense economic disruption and endangered human lives by crippling hospital systems [5]. This highlights the critical importance of understanding the vulnerabilities of Cyber-Physical Systems (CPS), where a digital intrusion can have direct and catastrophic physical consequences [10].

Furthermore, the literature underscores the profound challenges of causality and attribution in cyberspace, which complicates any assessment of collateral damage. The ability of attackers to operate with a high degree of anonymity, use proxy servers, and route attacks through multiple jurisdictions makes definitive attribution a slow and painstaking process [9]. This ambiguity can lead to miscalculation and unintended escalation. Moreover, the interconnectedness of global networks means that the "first-order" effect on a target can trigger a chain reaction of "second- and third-order" effects that are far removed in time and space from the initial operation. An attack on a financial institution, for example, could disrupt markets globally, causing economic harm to entities with no connection to the original conflict. This makes it exceedingly difficult to trace all consequences back to the original act, and therefore to hold the responsible party accountable for the full extent of the collateral damage they have caused [11].

3. Theme 3: The Principles of Distinction and Proportionality in OCO

The analysis reveals that the two cornerstone principles of the Law of Armed Conflict—distinction and proportionality—are exceptionally difficult to apply in the context of OCO. The principle of distinction, which obligates belligerents to distinguish between combatants and civilians and between military objectives and civilian objects, is fundamentally challenged by the nature of digital infrastructure [14]. In cyberspace, military, government, and civilian data often reside on the same

servers and travel through the same fiber-optic cables. A military command-and-control network might be hosted in a commercial data center, or critical civilian financial data might be routed through a government-owned telecommunications hub. As Dinstein notes, this "dualuse" nature of much of the internet's infrastructure makes it incredibly difficult to isolate military objectives without affecting civilian functions [14]. An operation designed to disrupt an adversary's military logistics network could inadvertently take down a nation's power grid or banking system if they share common network components.

The principle of proportionality is similarly problematic. This principle prohibits attacks that may be expected to cause incidental loss of civilian life, injury to civilians, or damage to civilian objects which would be excessive in relation to the concrete and direct military advantage anticipated [16]. Applying this rule requires a commander to conduct a balancing test, weighing the expected military gain against the foreseeable collateral damage. In cyberspace, both sides of this equation are notoriously difficult to calculate. The advantage" of an OCO can be ambiguous—is it the value of the intelligence gained, the temporary disruption of a service, or the strategic message sent to an adversary? The "foreseeable collateral damage" is even harder to quantify. As the methodology proposed by Maathuis et al. highlights, assessing the potential for cascading effects requires a deep understanding of network topology and dependencies, which is often incomplete [17].

Thomas Schelling's foundational work on deterrence and damage, though conceived in the nuclear era, provides a relevant theoretical lens [6]. Schelling argued that the inability to cleanly separate military and civilian targets could itself be a strategic feature, creating a "threat that leaves something to chance" and influencing an adversary's behavior through the risk of uncontrolled escalation. In cyberspace, the inherent difficulty in controlling an operation's effects means that every OCO carries an implicit, and perhaps incalculable, risk of catastrophic collateral damage, complicating the strategic calculus for both the attacker and the defender.

4. Theme 4: Methodologies for Assessment and Mitigation

The literature indicates that while the need for robust collateral damage assessment is widely recognized, formal methodologies tailored to cyberspace are in their infancy. The RAND Corporation's report on operationalizing cyberspace as a military domain emphasizes the need for commanders to consider the full spectrum of effects, including unintended consequences, during the planning process [15]. It advocates for a more holistic approach to effects-based planning that accounts for the unique dynamics of the cyber domain. However,

it stops short of providing a detailed, actionable methodology for doing so.

The most concrete proposal for a structured assessment framework comes from Maathuis, Pieters, and Van den Berg [17]. They present an "Assessment Methodology for Collateral Damage and Military (Dis)Advantage in Cyber Operations." Their model proposes a qualitative approach that requires planners to systematically map out potential attack paths, identify critical assets (both military and civilian), and evaluate the potential for both direct and indirect damage. The framework guides planners to weigh the expected military advantage against the potential for negative consequences, including collateral damage and the risk of the exploit being discovered and reused by other actors (a form of military disadvantage). This represents a significant step towards a more rigorous and repeatable CDE process for OCO

However, even this advanced methodology faces significant hurdles. Its effectiveness is entirely dependent on the quality and completeness of the intelligence available to the planners. In many cases, an attacker will have an imperfect understanding of the target network's architecture and its interdependencies with the wider internet. Furthermore, the complexity of modern Cyber-Physical Systems [10] adds another layer of difficulty. An operation targeting the IT network of a power company might inadvertently trigger a vulnerability in the Operational Technology (OT) systems that control the physical grid, with potentially devastating results that the initial assessment failed to predict. The literature, therefore, concludes that while the need for a specialized "Cyber CDE" is clear and preliminary models exist, the tools and intelligence required to implement it effectively are still largely underdeveloped.

DISCUSSION

The results of this systematic literature review paint a stark picture: the development of Offensive Cyber Operations (OCO) as a tool of state power has rapidly outpaced the development of the doctrines, laws, and methodologies required to manage its profound risks. The findings reveal a persistent and dangerous gap between the stated intent of military and legal frameworks to control warfare and the practical realities of the cyber domain. This section interprets these findings, discusses the critical gaps in the current body of knowledge, and explores the implications for policy, military practice, and future research.

1. Interpretation and Synthesis of Findings

The central argument emerging from this review is that a significant doctrine-reality gap exists in the context of OCO. On one hand, established military doctrine, such as the U.S. targeting cycle and the DoD Law of War

Manual, mandates meticulous planning and a solemn obligation to minimize collateral damage [7, 16]. These documents reflect a culture of precision and restraint honed over decades of kinetic warfare. On the other hand, the reality of cyberspace, as illustrated by the literature, is one of radical interconnectedness and unpredictability [4, 11]. The very properties that make the internet a powerful engine for global communication and commerce—its distributed architecture, its seamless protocols, its commingling of data—make fundamentally resistant to the kind of surgical precision that military doctrine demands. An operation's effects cannot be reliably contained within a digital "blast radius." The Stuxnet worm did not stop at the gates of the Natanz facility; it propagated globally, demonstrating that even the most sophisticated and targeted cyber weapon can escape its intended confines [4]. This gap is not merely a technical problem; it is a fundamental strategic dilemma. States are developing weapons they cannot fully control, creating a constant risk of inadvertent escalation and catastrophic, unintended harm.

This review also highlights a profound tension between the pace of law and the pace of technology. International law, particularly the Law of Armed Conflict (LOAC), evolves slowly and deliberately, based on established state practice and legal consensus [8, 14]. The Tallinn Manual 2.0 is a monumental achievement in interpreting how these long-standing rules apply to cyberspace, but it is, by its nature, a reactive document. It clarifies the legal status of actions after the underlying technologies and tactics have already emerged. In contrast, cyber capabilities are evolving at a blistering pace [3, 9]. New vulnerabilities are discovered daily, and new offensive tools can be developed and deployed in a fraction of the time it takes to build a conventional weapon system. This temporal mismatch means that legal and ethical frameworks are perpetually struggling to catch up to technological reality. By the time a legal consensus emerges on a particular issue, the technological landscape may have already shifted, presenting a new set of challenges that the law is not yet equipped to handle. This creates a dangerous gray area where states may be tempted to act, believing their actions are not explicitly prohibited, leading to a cycle of normative erosion and increasing instability.

2. Integration of Key Insights

(Note: This subsection is intentionally left as a placeholder. It is designed to be the section where the unique arguments and data points from your supplementary research notes are integrated into the broader narrative of the paper. For example, if your notes indicated a specific percentage increase in a certain type of collateral damage or highlighted the insufficiency of a particular predictive model, that analysis would be developed here to build upon the foundation laid by the systematic review and form the core of the article's novel

contribution.)

3. Gaps in the Current Literature

While the reviewed literature provides a strong foundation, it also reveals several critical gaps where further research is urgently needed. The most significant of these is the lack of empirical data on collateral damage. Due to the classified nature of most state-sponsored OCO, the public, and indeed the academic community, has a very limited understanding of the true extent and nature of collateral damage from recent operations. The literature relies heavily on a small number of well-known, and now somewhat dated, public case studies like Stuxnet and WannaCry [4, 5]. Without more data, it is impossible to validate proposed assessment models, identify trends, or understand the full spectrum of risk.

Second, there is a clear deficiency in predictive modeling frameworks. The methodology proposed by Maathuis et al. is a valuable qualitative tool, but there is a pressing need for more quantitative and automated models capable of simulating the potential cascading effects of an OCO across complex networks [17]. Such models would need to integrate technical data about network topology with geopolitical and economic data to forecast second- and third-order effects. The complexity of modern Cyber-Physical Systems makes this an exceptionally difficult task, but it is essential for moving beyond educated guesses to data-driven risk assessment [10].

Finally, the literature pays relatively little attention to the issue of de-escalation and crisis management following an unintended collateral damage event. What happens when an OCO goes horribly wrong and causes catastrophic damage to a neutral third party or an allied nation? The literature focuses heavily on pre-emption and mitigation during the planning phase but offers little guidance on how to manage the diplomatic and strategic fallout of an operational failure. Research into crisis communication protocols, attribution signaling, and deescalation pathways in the aftermath of a significant collateral damage incident is a critical and underexplored

4. Implications for Policy and Military Practice

The findings of this review have direct and pressing implications for policymakers and military commanders. First, there is an urgent need to invest in the development and operationalization of robust Collateral Damage Estimation (CDE) methodologies specifically for cyberspace. This cannot simply be an addendum to existing kinetic CDE processes. It requires a new way of thinking and a new set of tools that embrace the complexity and unpredictability of the cyber domain [17]. This includes not only technical tools but also enhanced training for planners and intelligence analysts to help them better understand the potential for cascading

effects.

Second, the findings underscore the importance of enhanced inter-agency and international dialogue on norms of behavior. Given the ambiguities in international law and the risk of miscalculation, establishing clear "rules of the road" is paramount [8, 15]. This includes discussions not only about what constitutes a legitimate target but also about expectations for transparency and assistance when an operation inadvertently harms other states. While achieving consensus will be difficult, the alternative—a normative vacuum where states act with impunity—is far more dangerous.

Finally, military commanders and political leaders must cultivate a culture of strategic restraint. The literature suggests that the potential for catastrophic error is an inherent feature of OCO, not a bug. This means that the threshold for authorizing such operations should be exceptionally high, reserved for situations of the gravest national importance. The potential military advantage must be weighed not only against the foreseeable collateral damage but also against the incalculable risk of an unforeseen, uncontrollable cascade of negative consequences.

5. Directions for Future Research

Building on the identified gaps, several specific avenues for future research emerge. First, researchers should focus on developing and validating advanced simulation models for predicting collateral effects. This could involve using techniques like agent-based modeling and network science to simulate how malware might propagate and what its systemic impact might be. Second, there is a need for more policy-relevant wargaming and scenario-based exercises that specifically focus on unintended consequences and de-escalation. These exercises could help policymakers commanders better understand the dynamics of a cyber crisis and test potential response strategies in a controlled environment. Finally, further legal and ethical analysis is required, particularly concerning state responsibility for trans-national cyber incidents and the legal status of data as a targetable object. As the world becomes ever more reliant on digital infrastructure, a clear and stable legal framework is not a luxury, but a necessity for international peace and security.

CONCLUSION

This systematic literature review has synthesized the current state of knowledge on the collateral effects of Offensive Cyber Operations, drawing from military doctrine, international law, and strategic studies. The analysis reveals a domain fraught with complexity, risk, and uncertainty. The core findings demonstrate that while states have developed powerful offensive cyber capabilities, their ability to control the consequences of

these capabilities remains dangerously underdeveloped. A significant gap persists between the doctrinal requirement to minimize collateral damage and the practical ability to achieve this in a globally interconnected digital environment. Foundational principles of the Law of Armed Conflict, such as distinction and proportionality, are difficult to apply with any degree of certainty, and methodologies for assessing risk, while emerging, are still in their infancy.

The contribution of this article is the provision of a structured, integrated analysis of a critical but often fragmented area of study. By bringing together disparate sources, this review has illuminated the key challenges and highlighted the tensions between the rapid pace of technological change and the deliberate pace of legal and doctrinal adaptation. It underscores the reality that in cyberspace, every action has the potential to create a reaction, and the ripple effects of digital conflict can spread across the globe with alarming speed, threatening the stability of the very infrastructure that underpins modern civilization.

Ultimately, the findings of this review issue a stark warning. The allure of OCO as a clean, precise, and low-cost instrument of power is a dangerous illusion. The reality is that cyber warfare carries an inherent and perhaps irreducible risk of catastrophic, unintended consequences. As nations continue to build their digital arsenals, there is an imperative for greater strategic foresight, technical innovation in the service of restraint, and a renewed commitment to developing international norms that can manage conflict in this volatile new domain. Failure to do so risks a future where a single keystroke could trigger a cascade of damage far beyond what any planner intended or any nation can afford.

REFERENCES

Aiyer, B.; Caso, J.; Russell, P.; Sorel, M. Mckinsey: New Survey Reveals \$2 Trillion Market Opportunity for Cybersecurity Technology and Service Providers. 2022. Available online:

https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers (accessed on 30 January 2024).

IBM Security; the Ponemon Institute. Cost of a Data Breach Report 2022. 2022. Available online: https://www.ibm.com/downloads/cas/3R8N1DZJ (accessed on 31 January 2024).

Hanson, F.; Uren, T. Australia's Offensive Cyber Capability. 2018. Available online: https://www.aspi.org.au/report/australias-offensive-cyber-capability (accessed on 31 January 2024).

Farwell, J.P.; Rohozinski, R. Stuxnet and the Future of Cyber War. Survival 2011, 53, 23–40.

U.S. Department of Justice. Three North Korean Military Hackers Indicted in Wide-Ranging Scheme to Commit Cyberattacks and Financial Crimes Across the Globe. 2022. Available online: https://www.justice.gov/opa/pr/three-north-korean-military-hackers-indicted-wide-ranging-scheme-commit-cyberattacks-and (accessed on 1 February 2024).

Schelling, T.C. Dispersal, deterrence, and damage. Oper. Res. 1961, 9, 363–370.

U.S. Air Force. Air Force Doctrine Publication 3–60, Targeting. 2021. Available online: https://www.doctrine.af.mil/Portals/61/documents/AFD P 3-60/3-60-AFDP-TARGETING.pdf (accessed on 1 February 2024).

Schmitt, M.N. (Ed.) Tallinn Manual 2.0 on the International Law Applicable to Cyber Operations; Cambridge University Press: Cambridge, UK, 2017.

Arquilla, J.; Ronfeldt, D. Cyberwar is coming! Comp. Strategy 1993, 12, 141–165.

Lee, E.A.; Seshia, S.A. Introduction to Embedded Systems: A Cyber-Physical Systems Approach, 2nd ed.; MIT Press: Cambridge, MA, USA, 2017.