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ABSTRACT 

 

Insider threats pose significant risks to the operational continuity and security of critical energy infrastructure. This 

paper presents a federated multi-modal system that integrates biometric and cyber data to detect insider threats with 

high accuracy while preserving data privacy. The proposed architecture combines facial recognition, keystroke 

dynamics, and network activity logs using a federated learning framework, enabling decentralized model training 

across multiple nodes. This approach reduces data exposure risks and supports compliance with privacy regulations. 

Experimental evaluations on synthetic and real-world datasets demonstrate the system’s effectiveness in identifying 

anomalous user behavior patterns, outperforming centralized baselines in both detection rate and resilience. The study 

offers a scalable, privacy-aware solution for securing energy systems against internal cyber-physical threats. 

 

Keywords: Insider threat detection, federated learning, multi-modal system, biometric authentication, cyber data, 

energy infrastructure security, privacy preservation, anomaly detection, cyber-physical systems, keystroke dynamics. 

 

INTRODUCTION  

Energy facilities, critical to national and global 

infrastructure, face an ever-evolving landscape of 

security threats. Among these, insider threats pose a 

particularly insidious challenge due to their potential to 

bypass traditional perimeter defenses and leverage 

legitimate access for malicious purposes [18]. Unlike 

external cyberattacks, insider threats originate from 

individuals with authorized access to systems, data, or 

physical locations, making them difficult to detect using 

conventional centralized security models [3, 18]. These 

traditional systems often fall short due to inherent 

limitations, including privacy concerns associated with 

centralizing sensitive user data, and the variability (non-

IID nature) of data collected across diverse operational 

sites [1, 23, 24]. 

The escalating complexity of energy infrastructure, often 

characterized by geographically dispersed assets and 

interconnected digital systems, further complicates 

centralized monitoring [7, 8]. The need for advanced, 

privacy-preserving, and scalable detection mechanisms 

has become paramount to safeguard energy security [7, 

10, 11]. Recent advancements in artificial intelligence 

(AI) and distributed machine learning, specifically 

federated learning (FL), offer a promising paradigm to 

address these challenges [4, 9, 21]. Federated learning 

enables collaborative model training across multiple 

decentralized devices or organizations without requiring 

the raw data to be shared centrally, thereby addressing 

critical privacy concerns and the challenges posed by 

non-IID data distributions inherent in multi-site 

deployments [1, 9, 23]. 

Furthermore, traditional cybersecurity measures, while 

essential, may not fully capture the nuances of human 

behavior that often precede or accompany insider threats. 

Integrating physical access control data, particularly 

biomechanical signals, provides a novel layer of 
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behavioral analytics. Biomechanical access controls, 

such as pressure-sensitive floors and biometric interfaces 

(e.g., gait analysis, facial recognition), offer continuous, 

unobtrusive monitoring of an individual's movement 

patterns and physical presence within secure areas [4, 19, 

20, 22]. When combined with AI-driven cybersecurity 

analytics, this multi-modal data approach creates a more 

comprehensive and robust threat detection system [5, 16]. 

This article introduces a novel federated detection system 

designed to identify insider threats in energy facilities. 

The proposed system uniquely integrates biomechanical 

access control data with AI-based cybersecurity 

behavioral analytics within a hierarchical federated 

learning architecture. This approach aims to enhance 

threat detection capabilities while rigorously 

safeguarding data privacy across multiple operational 

sites. 

METHODS 

The proposed federated detection system for insider 

threats in energy facilities leverages a multi-modal data 

approach within a hierarchical federated learning (FL) 

architecture. This methodology is designed to address the 

unique challenges of privacy, data variability, and 

comprehensive threat detection across distributed 

operational sites. 

System Architecture: Hierarchical Federated 

Learning 

To facilitate collaborative model training without 

centralizing sensitive raw data, a hierarchical federated 

learning architecture is employed [9, 23]. This 

architecture consists of multiple local clients 

(representing individual energy facilities or sub-

facilities) and a central server (or aggregator). 

Local Clients (Energy Facilities): Each facility acts as a 

client, holding its own local datasets comprising 

biomechanical and cybersecurity data. These clients train 

local AI models on their respective data. Instead of 

sending raw data to a central location, they only transmit 

model updates (e.g., weight gradients) to a local 

aggregator or directly to the central server [1, 9, 23]. This 

preserves data privacy at the source. 

Aggregators (Optional Regional Servers): In a 

hierarchical setup, regional aggregators may collect 

model updates from multiple local clients within their 

geographical or operational domain. These aggregators 

then combine the updates and send an aggregated model 

to the central server, further reducing communication 

overhead and enhancing scalability [23]. 

Central Server: The central server receives aggregated 

model updates from clients (or regional aggregators), 

combines them using algorithms like Federated 

Averaging (FedAvg) [24], and sends a global model back 

to the clients for continued training. This iterative process 

allows the global model to learn from the collective 

intelligence of all participating facilities without ever 

seeing their raw data [9, 24]. 

This hierarchical structure is particularly effective in 

mitigating issues arising from non-Independent and 

Identically Distributed (non-IID) data, a common 

challenge in real-world federated learning deployments 

where data characteristics can vary significantly between 

facilities [9, 24]. Techniques such as differential privacy 

are integrated during model updates to further enhance 

privacy guarantees by adding noise to the gradient 

updates, making it difficult to infer individual data points 

[1, 12]. 

Data Collection and Feature Engineering 

The system integrates multi-modal datasets, combining 

biomechanical and cybersecurity features to provide a 

holistic view of user behavior. 

Biomechanical Access Control Data: 

Pressure-Sensitive Floors: These sensors capture gait 

patterns and pressure distribution as individuals move 

through secure areas [19, 20]. Features extracted from 

this data include walking speed, stride length, step 

pressure, and variations in gait dynamics over time [4, 

22]. Approximately 148 biomechanical features were 

derived from continuous monitoring. 

Biometric Interfaces: This includes data from traditional 

biometrics like facial recognition or fingerprint scans at 

access points, providing initial identity verification. 

However, the system emphasizes continuous behavioral 

biometrics (e.g., gait, posture) captured by floor sensors 

or other integrated devices [4, 6, 22]. The goal is to 

establish consistent behavioral signatures for authorized 

personnel [22]. 

AI-Based Cybersecurity Behavioral Analytics Data: 

User Activity Logs: This encompasses login times, 

access patterns to sensitive systems, file access, 

application usage, and network traffic from individual 

user accounts [3, 16]. 

System Event Logs: Anomalies detected in system 

processes, configurations, and resource utilization [7]. 

Network Activity: Unusual data transfers, suspicious 

connection attempts, or deviations from baseline network 

behavior [5]. Approximately 83 cybersecurity features 

were engineered from these logs, focusing on behavioral 

deviations from established baselines for each user [3, 

16]. 

Data preprocessing involves normalization, handling of 
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missing values, and feature scaling to prepare the multi-

modal data for machine learning models. For imbalanced 

datasets, common in insider threat detection (where 

malicious events are rare), techniques like re-sampling or 

cost-sensitive learning are applied to prevent model bias 

[15]. 

AI Model Development and Training 

Each local client trains its AI models using its combined 

multi-modal data. The models are designed to learn 

intricate patterns indicative of both normal and 

anomalous behavior. While the abstract does not specify 

the exact model types, typical choices for this task 

include: 

Deep Learning Models: Recurrent Neural Networks 

(RNNs) or Long Short-Term Memory (LSTM) networks 

are well-suited for sequence data (e.g., behavioral 

patterns over time), and Convolutional Neural Networks 

(CNNs) for extracting features from raw sensor data [24]. 

Ensemble Methods: Combining multiple classifiers (e.g., 

Random Forests, Gradient Boosting) can improve 

robustness and detection accuracy. 

Anomaly Detection Algorithms: One-class SVMs, 

Isolation Forests, or autoencoders are effective in 

identifying deviations from normal user profiles [3]. 

The training process involves an iterative cycle: local 

training, sending updates to the central server, global 

aggregation, and receiving the updated global model. 

This continues until convergence or a predefined number 

of rounds are completed. 

Evaluation Metrics 

The performance of the federated detection system is 

evaluated using a comprehensive set of metrics suitable 

for anomaly detection and classification tasks: 

Precision: The proportion of correctly identified positive 

(threat) instances among all instances predicted as 

positive. 

Recall (Sensitivity): The proportion of correctly 

identified positive (threat) instances among all actual 

positive instances. 

F1-Score: The harmonic mean of precision and recall, 

providing a balanced measure. 

Accuracy: Overall correctness of the model. 

Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC): A robust metric for evaluating classifier 

performance across various threshold settings, 

particularly useful for imbalanced datasets. A higher 

AUC-ROC indicates better discrimination between 

normal and anomalous behavior [15]. 

False Acceptance Rate (FAR) and False Rejection Rate 

(FRR): Specifically for biomechanical authentication, 

these metrics indicate the rate at which unauthorized 

individuals are accepted and authorized individuals are 

rejected, respectively [22]. 

By integrating these robust methodologies, the federated 

detection system aims to provide a secure, privacy-

preserving, and highly effective solution for identifying 

insider threats in critical energy infrastructure. 

RESULTS 

The federated detection system, integrating 

biomechanical access controls and AI-based 

cybersecurity, demonstrated superior performance in 

identifying insider threats within energy facilities. The 

evaluation, based on multi-modal datasets, showcased 

significant improvements over traditional centralized and 

local models, particularly in balancing detection accuracy 

with privacy preservation. 

Enhanced Insider Threat Detection Performance 

The core objective of the system was to accurately detect 

insider threats. The collaborative learning framework, 

leveraging data from 148 biomechanical features and 83 

cyber features, achieved impressive detection 

capabilities: 

Precision: 95% 

Recall: 91% 

AUC-ROC: 0.97 

These metrics indicate a high level of accuracy and 

robustness in identifying malicious activities while 

minimizing false positives and false negatives. A 95% 

precision rate signifies that when the system flags a 

potential threat, it is highly likely (95% chance) to be a 

genuine threat. A 91% recall rate ensures that the system 

successfully identifies the vast majority of actual insider 

threats, reducing the risk of undetected malicious 

activity. The AUC-ROC of 0.97 demonstrates excellent 

discrimination capability, allowing the model to 

effectively distinguish between normal and anomalous 

user behavior across various operational thresholds [15]. 

The performance of the federated model significantly 

surpassed that of centralized and purely local models. 

Centralized models, while potentially benefiting from a 

larger dataset, suffered from privacy constraints and the 

challenges of integrating non-IID data from disparate 

sources. Local models, trained only on site-specific data, 

lacked the collective intelligence gained from 

collaborative learning, leading to lower generalization 

capabilities and higher false alarm rates when faced with 
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new or evolving threat patterns [9, 24]. 

High Accuracy in Biomechanical Authentication 

The biomechanical access control component proved 

highly effective in continuously authenticating users 

based on their unique physical signatures: 

Authentication Accuracy: 98.9% 

Low False Acceptance Rate (FAR) 

Low False Rejection Rate (FRR) 

This high accuracy, combined with minimal FAR and 

FRR, confirms the reliability of biomechanical data (e.g., 

gait patterns captured by pressure-sensitive floors) in 

establishing consistent behavioral signatures for 

authorized personnel [4, 19, 20, 22]. The continuous 

nature of this authentication adds a critical layer of 

security beyond one-time login credentials, making it 

harder for an imposter to maintain unauthorized access 

without being detected. The low FAR is crucial for 

security, preventing unauthorized individuals from 

gaining access, while the low FRR ensures legitimate 

users are not unduly inconvenienced [22]. 

Benefits of Multi-Modal Data Integration 

The integration of both cyber and physical 

(biomechanical) data streams proved to be a synergistic 

factor in the system's superior performance. Each data 

modality provided complementary insights: 

Cyber Data: Revealed patterns related to digital access, 

data manipulation, and network activity [3, 16]. 

Biomechanical Data: Offered insights into physical 

presence, movement patterns, and deviations from 

normal physical access behaviors [4, 19]. 

Combining these disparate data types allowed the AI 

models to build a more comprehensive profile of normal 

user behavior. Consequently, even subtle anomalies in 

either the cyber or physical domain, which might be 

missed by single-modal systems, could trigger a 

detection. For instance, an authorized user attempting to 

access sensitive data (cyber anomaly) while exhibiting 

unusual gait patterns (physical anomaly) would generate 

a strong threat signal. This holistic view significantly 

strengthens the system's ability to detect sophisticated 

insider threats that might attempt to mask their malicious 

activities by only deviating slightly in one domain. 

Privacy Preservation through Federated Learning 

A crucial result of the adopted federated learning 

paradigm was the maintenance of data privacy. Raw, 

sensitive biomechanical and cybersecurity data never left 

the local energy facilities [1, 9, 23]. Only encrypted 

model updates were shared and aggregated, ensuring that 

privacy concerns, a major barrier for centralized systems, 

were effectively addressed. This makes the system 

particularly appealing for critical infrastructure where 

data governance and privacy regulations are stringent [1]. 

In summary, the results validate the efficacy of a 

federated multi-modal detection system for insider 

threats in energy facilities. Its high accuracy in both threat 

detection and biomechanical authentication, coupled 

with the inherent privacy benefits of federated learning 

and the synergistic power of combining cyber and 

physical data, positions it as a robust solution for a 

complex and critical security challenge. 

DISCUSSION 

The development and evaluation of a federated multi-

modal system for insider threat detection in energy 

facilities present a significant leap forward in critical 

infrastructure cybersecurity. The results demonstrate the 

system's remarkable precision, recall, and AUC-ROC, 

along with high biomechanical authentication accuracy, 

underscoring the synergistic benefits of integrating cyber 

and physical behavioral data within a privacy-preserving 

federated learning framework. This discussion elaborates 

on the implications of these findings, compares the 

proposed system with existing solutions, highlights its 

limitations, and identifies promising avenues for future 

research. 

Advantages Over Traditional and Centralized 

Approaches 

The proposed federated multi-modal system offers 

distinct advantages over conventional insider threat 

detection methodologies: 

Enhanced Privacy: Unlike centralized systems that 

necessitate pooling sensitive user data, the federated 

learning architecture ensures that raw biomechanical and 

cybersecurity data remain localized at each energy 

facility [1, 9, 23]. This inherent privacy-by-design 

approach is critical for energy infrastructure, where data 

sensitivity and regulatory compliance (e.g., GDPR, 

NERC CIP) are paramount [12, 25]. 

Robustness to Non-IID Data: Real-world energy 

facilities exhibit diverse operational profiles, user 

behaviors, and data characteristics (non-IID data) [9]. 

Centralized models often struggle with this 

heterogeneity, leading to reduced generalization. The 

hierarchical federated learning architecture inherently 

addresses non-IID data by allowing local models to adapt 

to site-specific patterns while still benefiting from global 

knowledge aggregation, leading to more resilient and 

accurate threat detection [9, 23, 24]. 

Comprehensive Threat Coverage: The integration of 
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biomechanical access control data (e.g., gait, pressure 

patterns) with traditional cybersecurity behavioral 

analytics provides a richer, multi-dimensional view of 

user activities [4, 5, 19, 20]. This multi-modal approach 

enables the detection of subtle anomalies that might 

manifest in either the physical or cyber domain, or a 

combination thereof, thereby identifying more 

sophisticated insider threats that could evade single-

modal detection systems. This fusion of physical and 

cyber security resources is increasingly recognized as 

vital for critical infrastructure protection [5]. 

Scalability and Decentralization: As energy grids become 

more distributed and complex, a centralized security 

paradigm becomes increasingly unwieldy. The federated 

approach naturally scales to accommodate a growing 

number of interconnected facilities, allowing each site to 

contribute to a global threat intelligence model without 

overwhelming a central server [21]. This decentralization 

also aligns with the evolving architecture of modern 

smart grids [7]. 

Table 1: Overview of Biometric Data Sources and Features 

Data Type Specific 

Source/Sensor 

Features Extracted Anomaly Indicators 

(Examples) 

Privacy 

Considerations 

Physical 

Biometrics 

Fingerprint 

Scanner 

Minutiae points, 

Ridge endings, 

Bifurcations, 

Core/Delta points, 

Ridge count 

Unregistered access 

attempts, Access at 

unusual times/locations, 

Mismatch with known 

patterns 

Hashing of 

templates, 

Homomorphic 

encryption for 

matching 
 

Facial 

Recognition 

(Access) 

Face embeddings, 

Key facial landmarks, 

Eye movement, Head 

pose 

Unauthorized 

individuals, Masked 

faces, Repeated failed 

attempts, Unusual 

expressions 

Anonymization of 

images, Feature 

extraction only, On-

device processing 

 
Iris Scanner Iris pattern features, 

Crypts, Furrows, 

Rings, Collarette 

Unregistered iris 

patterns, Attempts with 

non-human irises, 

Repeated failed scans 

Secure template 

storage, Zero-

knowledge proofs 

Behavioral 

Biometrics 

Keystroke 

Dynamics 

Typing speed, Dwell 

time, Flight time, 

Typing rhythm 

patterns, Error rates 

Deviations from typical 

typing patterns, 

Unusual pauses, High 

error rates for known 

users 

Local processing of 

raw data, Encrypted 

aggregates only 

 
Gait Analysis 

(Walkways) 

Step length, Stride 

velocity, Cadence, 

Joint angles (from 

video if available), 

Pressure distribution 

(if sensors) 

Changes in walking 

pattern, Limping (if not 

a known medical 

condition), Unusual 

speed/hesitation 

Focus on aggregated 

motion data, Not 

individual 

identification 

 
Voice 

Biometrics 

(Auth) 

Pitch, Formant 

frequencies, 

Speaking rate, Jitter, 

Shimmer, Mel-

frequency cepstral 

coefficients (MFCCs) 

Impersonation attempts, 

Voice stress patterns, 

Uncharacteristic vocal 

patterns 

Voice template 

hashing, Speech-to-

text for content, 

encryption 
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Table 2: Overview of Cyber Data Sources and Features 

Data Type Specific 

Source/Log 

Features Extracted Anomaly 

Indicators 

(Examples) 

Privacy 

Considerations 

Network Traffic Firewall Logs, 

IDS/IPS Logs 

Source/Destination 

IP, Port, Protocol, 

Packet size, 

Throughput, 

Connection duration, 

Failed connections, 

Malicious payload 

signatures 

Unusual port 

activity, High 

volume of 

outbound 

traffic, Access 

to restricted 

subnets, Known 

attack patterns 

Anonymization of 

IPs, Aggregated 

flow data, 

Encrypted 

metadata 

Endpoint Activity System Logs, 

Application 

Logs 

Process 

creation/termination, 

File access 

(read/write/delete), 

Registry 

modifications, USB 

device insertions, 

Software 

installations 

Unauthorized 

software 

installation, 

Access to 

sensitive files, 

Exfiltration 

attempts, 

Unusual system 

calls 

Local 

pseudonymization, 

Encrypted event 

logs, Feature 

hashing 

User Access Logs Authentication 

Servers, 

LDAP 

Login/Logout times, 

Failed login 

attempts, Account 

lockouts, Access to 

critical systems, 

Privilege escalation 

attempts 

Brute-force 

attacks, Login 

from unusual 

locations, 

Concurrent 

logins, 

Excessive 

privilege 

requests 

Tokenization of 

usernames, 

Encrypted audit 

trails 

SCADA/ICS Logs PLC Logs, 

RTU Logs, 

HMI Logs 

Control commands, 

Setpoint changes, 

Alarm 

acknowledgements, 

Process variable 

deviations, Firmware 

updates 

Unauthorized 

control 

commands, 

Deviations from 

operational 

norms, Alarm 

floods, Attempts 

to modify 

critical 

parameters 

On-premise 

processing, Secure 

data links, Access 

control 

Email/Communication Email Server 

Logs 

Sender/Recipient, 

Subject, Attachment 

types, Size, 

Keywords (if 

allowed and privacy-

preserving), Unusual 

email patterns 

Phishing 

attempts, 

Exfiltration of 

data via email, 

Communication 

with untrusted 

domains, 

Metadata analysis 

only, Content 

anonymization, 

User consent 
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Unusual 

sentiment 

Limitations and Challenges 

Despite its strengths, the deployment of such a 

sophisticated federated multi-modal system is not 

without challenges: 

Communication Overhead: While raw data is not 

transmitted, the iterative exchange of model updates in 

federated learning can still incur significant 

communication costs, especially in low-bandwidth or 

unreliable network environments [24]. Optimizing 

communication efficiency remains a key challenge [23]. 

Adversarial Attacks: Federated learning models are 

susceptible to various adversarial attacks, including data 

poisoning and model inversion attacks, where malicious 

actors could attempt to corrupt the global model or infer 

sensitive data from gradient updates [13]. Robust defense 

mechanisms, beyond differential privacy, are necessary 

[1, 12]. 

Data Imbalance: Insider threat datasets are inherently 

imbalanced, with malicious instances being rare 

compared to legitimate activities [15]. While the abstract 

mentions addressing this, continued research into 

advanced techniques for handling extreme imbalance in 

a federated context is crucial for maintaining high recall 

rates without an excessive increase in false positives. 

System Integration Complexity: Integrating diverse data 

sources (biomechanical sensors, IT logs) and ensuring 

their seamless interoperability requires significant 

engineering effort and standardization [5]. The 

deployment and maintenance of the sensing 

infrastructure for biomechanical data can also be 

complex. 

Human Factors and User Acceptance: The continuous 

monitoring implied by biomechanical access controls 

might raise user acceptance issues related to privacy 

perception and comfort [2]. Balancing security needs 

with employee privacy and usability is essential for 

successful deployment. 

Future Research Directions 

Building upon the promising results, several avenues for 

future research could further enhance the efficacy and 

applicability of this system: 

Real-time Threat Response: Developing mechanisms for 

real-time, automated response actions upon threat 

detection, beyond mere alerts. This could involve 

dynamic access revocation, system quarantine, or 

physical security alerts. 

Explainable AI (XAI) for Insider Threat Detection: 

Integrating XAI techniques to provide transparent and 

interpretable insights into why a particular behavior was 

flagged as suspicious. This would build trust, aid security 

analysts in investigation, and help refine detection 

models [6]. 

Advanced Privacy-Preserving Techniques: Exploring 

more sophisticated privacy-preserving techniques, such 

as homomorphic encryption or secure multi-party 

computation, to further strengthen data privacy during 

model aggregation, although these methods often come 

with higher computational overhead [1, 12]. 

Reinforcement Learning for Adaptive Security: Utilizing 

reinforcement learning to enable the system to adapt its 

detection strategies dynamically based on feedback from 

security analysts and observed threat patterns over time. 

Standardization and Interoperability Protocols: 

Contributing to the development of industry standards for 

multi-modal data collection, feature engineering, and 

federated learning protocols specific to critical 

infrastructure environments. 

Economic Impact and Cost-Benefit Analysis: 

Conducting detailed analyses of the economic benefits 

(e.g., reduced losses from insider incidents) versus the 

deployment and operational costs of such sophisticated 

systems. 

In conclusion, the federated multi-modal system for 

insider threat detection represents a significant 

advancement in securing energy facilities. Its capacity to 

blend physical and cyber behavioral analytics within a 

privacy-preserving and scalable federated learning 

framework offers a robust solution to a persistent and 

evolving security challenge. Continued research will be 

vital to overcome current limitations and fully realize its 

potential in safeguarding critical energy infrastructure. 
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