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ABSTRACT 

 

Background: The transformative potential of Artificial Intelligence (AI) in healthcare is hampered by the "black box" 

problem, where a lack of transparency in decision-making fundamentally undermines clinician trust and creates 

barriers to clinical adoption. Explainable Artificial Intelligence (XAI) is proposed as a necessary solution to bridge 

the gap between high-performance AI models and the critical need for justification and accountability in patient care. 

Methods: This systematic literature review was conducted in adherence to PRISMA guidelines, analyzing literature 

published between January 2020 and early 2024. A rigorous search across major databases identified 50 relevant 

primary studies on XAI applications in clinical and biomedical contexts. Data extracted included the medical domain, 

AI model, XAI technique, and reported impact on trust and accuracy. 

Results: Analysis of the 50 studies demonstrated a wide application of XAI across diverse medical fields, including 

diagnostics, medical imaging, and disease prediction. XAI—especially methods like SHAP, LIME, and GRAD-

CAM—was found to significantly enhance interpretability, transparency, and diagnostic accuracy in these 

applications, successfully building clinician confidence in AI systems. The primary applications were observed in 

areas like chronic wound classification, cancer diagnosis, and cardiovascular risk prediction. 

Conclusion: XAI is paramount for the safe and effective integration of AI into clinical practice. However, real-world 

integration is associated with persistent technical and data-quality challenges, including inconsistent validation and 

biased datasets. Future efforts must prioritize the development of standardized frameworks and regulatory 

compliance to ensure safe, ethical, and fully explainable AI use in healthcare. 
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INTRODUCTION  

1.1. The AI Revolution in Healthcare: Promise and 

Peril 

The integration of Artificial Intelligence (AI) and 

Machine Learning (ML) into healthcare has ushered in an 

era of unprecedented potential, promising to redefine 

clinical workflows, improve diagnostic speed, and enable 

truly personalized medicine . Across the globe, AI 

models are demonstrating high-level efficacy in tasks 

ranging from classifying medical images to predicting 

patient outcomes and assisting in drug discovery . The 

core promise lies in AI’s ability to process massive, 

complex datasets—such as genomic profiles, electronic 

health records (EHRs), and high-resolution imaging—far 

faster and sometimes with greater precision than human 

practitioners alone . Applications span virtually every 

medical sub-specialty, including radiology, pathology, 

cardiology, and oncology, positioning AI as a crucial tool 

for future healthcare systems . 
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However, this technological leap is not without its 

significant challenges, particularly concerning the 

deployment of sophisticated deep learning models. These 

powerful models often operate as "black boxes," meaning 

their internal decision-making processes are opaque and 

unintuitive to human observers . While the model may 

deliver a correct diagnosis, the reasoning pathway that is 

associated with that decision remains obscured. This 

opacity presents a critical problem for clinical adoption, 

as it directly conflicts with the fundamental principles of 

medical practice: accountability, justification, and patient 

safety . Clinicians need to understand why a model made 

a specific prediction before they can confidently 

incorporate it into a treatment plan or diagnosis, 

especially when dealing with high-stakes health 

decisions. The inability to inspect and validate an AI’s 

internal logic creates a barrier to trust and poses ethical 

and legal quandaries that must be addressed before 

widespread clinical integration can occur . 

1.2. The Imperative for Explainable Artificial 

Intelligence (XAI) 

The necessity for transparency has led to the emergence 

of Explainable Artificial Intelligence (XAI). XAI is an 

umbrella term for a suite of techniques designed to make 

the predictions of complex ML models comprehensible 

to humans. Its aim is not merely to improve the AI's 

performance but, more critically, to build a system of 

mutual understanding and trust between the technology 

and its human users . 

The core argument driving this review is that the lack of 

transparency in AI decision-making fundamentally 

undermines trust in healthcare applications, creating 

barriers to clinical adoption . A clinician who cannot 

explain an AI’s output to a patient or justify it to a peer is 

unlikely to rely on it. XAI provides the necessary tools 

for generating insights, often in the form of feature 

importance scores or visual heatmaps, that clarify which 

input data points—be they specific genes, image regions, 

or vital signs—were most influential in the model's final 

output . 

Beyond clinical confidence, XAI addresses critical 

ethical and regulatory requirements. From an ethical 

standpoint, explanations help identify and mitigate 

potential biases embedded in the training data, ensuring 

the model's decisions are fair and equitable across 

different demographic groups . Legally, as regulatory 

bodies like the FDA and organizations publishing 

guidelines like DECIDE-AI  begin to grapple with the 

complexities of AI-driven medicine, the ability to audit 

and explain an AI's decision-making process is becoming 

a non-negotiable requirement for clinical approval and 

implementation . Therefore, XAI is not a peripheral 

feature but an imperative for transforming AI from a 

laboratory tool into a dependable clinical assistant. 

1.3. Review Objectives and Structure 

Given the rapidly evolving landscape and the critical 

need for XAI integration, a comprehensive synthesis of 

current research is essential. This systematic literature 

review aims to provide a structured overview of the 

application of XAI in the healthcare domain over the past 

four years. 

Our primary objectives are: 

1. To map the diverse medical domains where XAI 

has been actively applied. 

2. To identify and categorize the dominant XAI 

techniques (e.g., LIME, SHAP) being utilized with 

various ML models. 

3. To synthesize evidence regarding the reported 

association of XAI with clinician trust, transparency, and 

model accuracy. 

4. To discuss the inherent technical and practical 

challenges associated with limiting the widespread real-

world adoption of XAI in clinical environments. 

The remainder of this article is structured as follows: 

Section 2 details the methodology employed for 

identifying and synthesizing the literature. Section 3 

presents a structured analysis of the results, categorized 

by medical application and XAI technique. Section 4 

offers a comprehensive discussion of the findings, 

implications, challenges, and future research directions. 

2. Methods 

2.1. Protocol and Registration 

This systematic literature review was conducted in 

accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

statement . While this review involves a qualitative 

synthesis of literature rather than a meta-analysis of 

quantitative data, adhering to PRISMA ensures 

maximum transparency and rigor in the reporting of the 

search and selection process. 

2.2. Search Strategy and Data Sources 

A comprehensive search strategy was designed to capture 

primary research articles on XAI applied to the healthcare 

sector. The search was systematically executed across 

major bibliographic databases, including PubMed, 

Scopus, Web of Science, and IEEE Xplore. 

The search period was strictly defined as January 1, 2020, 

to early 2024, to capture the most contemporary research 

reflecting the recent surge in XAI methodologies. 

A structured set of keywords was employed, combining 
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terms related to explainability with terms related to the 

application domain: 

● (Explainable AI OR XAI OR Interpretability OR 

LIME OR SHAP OR GRAD-CAM) AND (Healthcare 

OR Medicine OR Clinical OR Medical OR Diagnosis OR 

Patient OR Health Records) 

2.3. Eligibility and Selection Criteria 

(Inclusion/Exclusion) 

Inclusion Criteria Exclusion Criteria 

Peer-reviewed journal articles and archival 

conference papers. 

Conference abstracts, presentations, editorials, 

and opinions. 

Articles published in English. Non-English language articles. 

Focus on the application of XAI or intrinsically 

interpretable models within a medical, clinical, 

or biomedical research context. 

Theoretical XAI papers with no specific 

healthcare application or general AI in 

healthcare reviews without an XAI focus. 

Original research detailing the methodology 

and results of a specific XAI model. 

Articles where the specific XAI technique was 

not clearly identifiable or described. 

Publication date between January 2020 and 

early 2024. 

Publications outside the defined search period. 

2.4. Study Selection Process 

The selection process proceeded through four stages as 

recommended by PRISMA: identification, screening, 

eligibility, and inclusion. 

1. Identification: Initial searches were conducted 

across the defined databases, and duplicate 

records were removed. 

2. Screening: Titles and abstracts of the retrieved 

articles were independently screened against the 

inclusion/exclusion criteria. 

3. Eligibility: The full texts of potentially relevant 

articles were retrieved and assessed in detail. 

Any article that failed to meet the specific criteria 

(e.g., lack of clear XAI method description, non-

clinical focus) was excluded. 

4. Inclusion: The final set of papers was determined 

for data extraction and synthesis. 

2.5. Data Extraction and Synthesis 

For each included study, the following key variables were 

systematically extracted: 

● Publication year and primary author. 

● Specific Medical Domain (e.g., Cardiology, 

Radiology). 

● AI Model Type (e.g., Convolutional Neural 

Network (CNN), Support Vector Machine (SVM)). 

● XAI Method utilized (e.g., SHAP, LIME, Grad-

CAM, intrinsically interpretable). 

● Key Findings related to model performance, 

interpretability, and trust. 

The final synthesis involved a thematic analysis 

approach. Studies were grouped by their application 

domain and the type of XAI technique employed. This 

thematic grouping allowed for a comprehensive 

qualitative synthesis of findings, highlighting trends in 

XAI usage, identifying the most effective explanation 

modalities, and synthesizing the reported challenges to 

implementation. 

3. Results 
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3.1. Study Selection and Characteristics 

Following the systematic search and rigorous application 

of the eligibility criteria, a total of 50 studies published 

between 2020 and 2024 were included for qualitative 

synthesis. This high volume of recent publications 

underscores the explosive growth and recognized 

importance of XAI within the medical research 

community since the beginning of the decade. 

The studies covered an extensive range of clinical 

applications, reflecting the universal need for 

transparency wherever AI is applied in healthcare. The 

distribution of studies by year shows a clear upward 

trend, with the highest concentration of research 

appearing in 2021 and 2022, signaling a rapid maturation 

of the field. 

3.2. Mapping of XAI Applications Across Clinical 

Domains 

The applications of XAI can be broadly grouped into four 

major clinical domains, with the majority focusing on 

visual diagnostics and critical risk prediction: 

3.2.1. Medical Imaging and Diagnostics 

Imaging-based diagnostics constitutes a highly active 

area for XAI research, primarily because XAI techniques 

can generate visual explanations that resonate intuitively 

with radiologists and pathologists. 

• ● Cancer Detection: XAI is extensively used in 

oncology to justify the results of deep learning 

models. Studies covered detailed analysis of 

mammograms , interpretation of pulmonary diseases 

from chest radiographs , and even the identification 

and prediction of brain tumors . In these cases, 

heatmaps generated by methods like Grad-CAM are 

crucial, highlighting the specific tumor or lesion 

regions that were associated with the diagnostic 

prediction, thus increasing clinician confidence in the 

model's focus . 

• ● Infectious Diseases and Wound Care: XAI has 

played a vital role in rapidly developing models for 

COVID-19 diagnosis using CT scans and X-rays . 

Similarly, XAI-CWC, a highly transparent tool, was 

developed for chronic wound classification , where 

transparency is essential for treatment planning. XAI 

has also been applied to diagnose fungal keratitis 

using in vivo confocal microscopy images  and to 

detect tuberculosis from chest radiographs . 

• ● Neurological Imaging and Ophthalmology: XAI 

models have been employed for retinoblastoma 

diagnosis, using LIME and SHAP to interpret deep 

learning model decisions on ocular images . The use 

of XAI in analyzing cerebrospinal fluid for 

diagnostics further demonstrates its utility in 

complex neurological conditions . 

3.2.2. Disease Prediction and Risk Assessment 

This domain leverages XAI to explain complex, 

multivariate risk models, often utilizing electronic health 

records (EHRs) or molecular data. 

● Cardiovascular and Metabolic Risk: Studies 

focusing on cardiovascular event risk prediction use XAI 

to identify influential molecular data  or analyze ECG 

signals . XAI was also applied to enhance a prediction 

model for heart failure survival  and to predict 

cardiovascular outcomes using EHRs . 

● Neurodegenerative Diseases: For conditions like 

Alzheimer's disease (AD), XAI is used to interpret multi-

modal detection and prediction models . By explaining 

which features (e.g., MRI data, cognitive scores, genetic 

markers) were associated with an AD prediction, 

clinicians gain insight into the disease's progression 

factors. 

● Acute Care and Risk Factors: XAI has been used 

for predicting the need for ventilator support and 

mortality in COVID-19 patients , predicting deterioration 

risk in hepatitis patients , and predicting readmission risk 

among frail patients . The interpretability provided is 

crucial for early intervention strategies. 

3.2.3. Genetics, Drug Discovery, and Personalized 

Medicine 

In highly complex, high-dimensional data environments 

like genomics and proteomics, XAI helps sift through 

millions of data points to identify causal or predictive 

features. 

● Biomarker Identification: XAI has been 

instrumental in identifying biologically relevant gene 

expression patterns in longitudinal human studies , 

particularly in obesity research. It has also been applied 

to precision medicine in acute myeloid leukemia , where 

understanding the model's reliance on specific 

biomarkers is essential for tailoring treatment. 

● Drug Development: XAI plays a key role in drug 

discovery, helping researchers understand why a model 

predicts a compound will be active or toxic . This can 

accelerate the discovery pipeline by focusing laboratory 

efforts on compounds with justifiable predicted efficacy. 

3.2.4. Function and Behavioral Health 

XAI is increasingly applied to monitor human function 

and behavioral health, where the context of the 

explanation is as important as the prediction itself. 

● Mental and Neurological Health: XAI is being 
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used to model biomedical mental disorder diagnoses  and 

to tackle the complexity of mental health research by 

interpreting models of pediatric psychiatric conditions . 

In neurology, XAI models have interpreted stroke-

impaired electromyography patterns  and predicted 

stroke based on EEG signals . 

● Functional Monitoring: XAI has been applied to 

interpret wearable sensor data for gait analysis, helping 

to identify patients with osteopenia and sarcopenia in 

daily life , and for falls prediction . 

3.3. Analysis of Dominant XAI Techniques 

The review confirms that the overwhelming majority of 

contemporary XAI applications in healthcare rely on 

model-agnostic, post-hoc explanation techniques . This 

preference is pragmatic: it allows researchers to deploy 

the most powerful, often opaque, deep learning 

architectures while still providing a subsequent, 

understandable rationale for a given decision. This 

synthesis of the 50 analyzed studies demonstrates 

unequivocally that Explainable Artificial Intelligence 

(XAI)—especially methods like SHAP, LIME, and 

GRAD-CAM—is associated with enhanced 

interpretability and builds clinician confidence in AI 

systems by translating complex algorithmic outputs into 

clinically actionable insights. 

The most frequently employed techniques identified 

across the literature are SHAP, LIME, and GRAD-CAM. 

While a small number of studies utilized intrinsically 

interpretable models, particularly for low-dimensional or 

simplified risk models , their scope is limited by the 

exponential rise of deep learning in domains like medical 

imaging. Therefore, the focus of this analysis is on the 

mechanisms and limitations of the three dominant post-

hoc approaches, which form the technical bedrock of 

XAI in modern clinical research. 

3.3.1. Detailed Mechanisms of Dominant XAI 

Techniques 

Understanding the internal workings of these XAI 

methods is crucial, as their underlying mathematical 

assumptions directly impact the faithfulness and utility of 

the explanation provided to the clinician. Each method 

approaches the problem of interpretability from a distinct 

theoretical foundation, leading to different strengths and 

weaknesses in clinical contexts. 

3.3.1.1. SHAP (SHapley Additive exPlanations) 

SHAP represents a conceptual leap in model 

explainability by unifying several existing methods (such 

as LIME, DeepLIFT, and feature importance methods) 

under a single theoretical framework rooted in 

cooperative game theory . The fundamental goal of 

SHAP is to assign a unique, justifiable importance 

value—a Shapley value—to every feature for a specific 

prediction. 

Mechanism and Theoretical Foundation: 

In cooperative game theory, the Shapley value, 

developed by Lloyd Shapley, is the only method that 

satisfies a set of desirable properties: local accuracy (the 

explanation must match the model output for the instance 

being explained), missingness (features whose value is 

zero should have no impact), and consistency (if a 

feature's contribution increases, its importance should not 

decrease). 

In the context of a machine learning model, the "game" 

is the prediction task, the "players" are the input features, 

and the "payout" is the difference between the actual 

prediction and the average expected prediction (the 

baseline). The SHAP value for a feature is its weighted 

average marginal contribution across all possible feature 

coalitions (all permutations in which the feature could be 

introduced). 

The SHAP explanation model is an additive feature 

attribution method: 

where  is the model prediction,  is the baseline 

expectation (average prediction),  is a simplified input 

feature (e.g., ), and  is the SHAP value of feature . The 

Shapley value () for feature  is calculated as: 

where  is the set of all features,  is a subset of features 

without feature , and  is the prediction function with only 

features in  present. 

Clinical Utility and Computational Challenges: 

SHAP’s key clinical advantage is its global consistency. 

Because the calculation is derived from a robust 

theoretical foundation, a SHAP value for a feature can be 

interpreted consistently across different predictions. For 

instance, in predicting lung and bronchus cancer 

mortality rates , SHAP can consistently quantify how 

socioeconomic factors or environmental exposures are 

associated with the risk compared to the population 

average. This consistency is essential for comparative 

clinical analysis and regulatory auditing . SHAP is 

frequently applied to tabulate data like EHRs and 

genetics, as seen in risk prediction of cardiovascular 

events using molecular data . 

However, the major limitation is computational 

complexity. Calculating the exact Shapley value requires 

evaluating the model  times for a model with  features, 

which is often infeasible for high-dimensional clinical 

data (e.g., millions of pixels in an image or thousands of 

genetic markers). This has led to the development of 

approximations: 
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● Kernel SHAP: A model-agnostic approximation 

that employs LIME’s local surrogate modeling approach 

but enforces the desirable Shapley properties. It samples 

feature coalitions instead of checking all of them. 

● Tree SHAP: A highly optimized version for tree-

based models (like XGBoost or Random Forest) that 

achieves exact calculation in polynomial time, making it 

much faster in applicable scenarios. 

● Deep SHAP: An approximation method 

specifically for deep learning models that uses DeepLIFT 

to approximate the Shapley values. 

The reliance on approximations implies the resulting 

SHAP value is an approximation rather than truly exact, 

introducing a potential source of error in the explanation, 

particularly in time-sensitive clinical deployment. The 

trade-off between computational burden and explanation 

fidelity is a persistent challenge in high-throughput 

healthcare settings. 

3.3.1.2. LIME (Local Interpretable Model-agnostic 

Explanations) 

LIME is a pioneering model-agnostic technique that 

focuses on providing an explanation that is locally 

faithful—meaning it accurately explains the model’s 

behavior around a specific prediction, even if the overall 

model is highly complex . 

Mechanism and Theoretical Foundation: 

LIME operates on the principle that while a complex 

model might be non-linear globally (e.g., a deep neural 

network), it can be approximated by a simple, 

interpretable model (e.g., linear regression or a shallow 

decision tree) within the local vicinity of a single data 

instance, . 

The process for a single prediction is as follows: 

1. Perturbation: LIME first generates a large 

number of perturbed, or slightly modified, data samples 

around the input instance . For image data, this might 

involve turning small sections of the image grey ; for text, 

it involves omitting words. 

2. Prediction and Weighting: The complex "black 

box" model is used to predict the output for all these 

perturbed samples. Each perturbed sample is then 

weighted by its proximity to the original instance  (closer 

samples receive higher weights), often using an 

exponential kernel. 

3. Local Surrogate Model: An interpretable model 

() is trained on these weighted, perturbed samples and 

their predictions. The goal of  is to minimize the loss (), 

which measures how well  approximates , while keeping  

simple (minimizing its complexity, ): 

where  is the black-box model,  is the family of 

interpretable models, and  is the proximity measure 

around . The resulting explanation  is a simple, typically 

linear, model that explains the prediction of  only within 

the small localized region defined by . 

Clinical Utility and Limitations: 

LIME’s strength is in its simplicity and speed, making it 

suitable for generating explanations on-the-fly for real-

time diagnostics . Furthermore, its model-agnostic nature 

means it can be applied to virtually any AI in clinical use, 

from predicting mental disorder diagnosis  to analyzing 

blood tests for COVID-19 . The output is a list of features 

(or segments, in the case of images) with weights 

indicating their local contribution to the specific 

outcome. Its application in retinoblastoma diagnosis 

demonstrated its ability to interpret deep learning models 

effectively . 

The primary limitation of LIME is its inherent focus on 

local fidelity at the expense of global consistency. The 

explanation generated for a patient's diagnosis is only 

guaranteed to be accurate in the small neighborhood of 

that patient's data. If two patients have very similar 

profiles but one feature is slightly different, LIME might 

produce vastly different explanations that are both locally 

true but appear contradictory when compared side-by-

side. This lack of global coherence can be confusing for 

clinicians seeking to establish general patterns or rules 

from the AI’s behavior. Furthermore, the selection of the 

size and weighting of the local neighborhood is non-

trivial and can significantly influence the resulting 

explanation, leading to instability or lack of robustness in 

the explanations themselves. 

3.3.1.3. GRAD-CAM (Gradient-weighted Class 

Activation Mapping) 

Unlike the model-agnostic SHAP and LIME, GRAD-

CAM is a model-specific technique designed to provide 

visual explanations for Convolutional Neural Networks 

(CNNs), making it the dominant XAI method in medical 

imaging . 

Mechanism and Theoretical Foundation: 

CNNs excel in medical imaging tasks, such as X-ray and 

CT interpretation, by processing data through multiple 

layers of convolutions to extract hierarchical features. 

GRAD-CAM answers the question: "Which regions in 

the input image were most important for the model's final 

classification decision (e.g., 'Tuberculosis' or 'Normal')?" 

GRAD-CAM uses the gradients of the target concept (the 

predicted class score) flowing into the final convolutional 

layer of the CNN. The final convolutional layer is chosen 

because it retains rich spatial information about the input 

image, unlike the fully connected layers that follow, 
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which often lose spatial resolution. 

1. Gradient Calculation: The gradient of the class 

score () with respect to the feature map () of the last 

convolutional layer is calculated: . 

2. Global Average Pooling: These gradients are 

then globally averaged across the spatial dimensions () to 

obtain a set of neuron importance weights () for the target 

class . This weight  represents the importance of feature 

map  for the decision . 

3. Weighted Sum and ReLU: The final Class 

Activation Map () is obtained by performing a weighted 

sum of the forward activation maps () using the 

importance weights () and then applying a Rectified 

Linear Unit (ReLU) function. The ReLU ensures only 

features that positively influence the target class decision 

are highlighted: 

The resulting map is then up-sampled to the resolution of 

the input image and overlaid as a heatmap. 

Clinical Utility and Limitations: 

GRAD-CAM’s output is a high-resolution heatmap 

overlaid directly onto the input image, visually 

demonstrating the evidence base for the AI’s diagnosis . 

This format is highly compatible with the established 

clinical workflow of radiologists and pathologists, being 

widely used in studies for lung cancer , mammography , 

and infectious disease detection . This direct visual 

evidence is strongly associated with increased clinical 

confidence and utility. The visual explanation allows the 

clinician to quickly verify if the AI is focusing on 

clinically relevant pathology or, conversely, if it is 

relying on spurious correlations (e.g., an unrelated 

metallic artifact or label), which serves as an important 

validation step. 

The main limitation is its model-specificity: GRAD-

CAM and its variants are inherently tied to the 

architecture of CNNs and cannot be readily applied to 

non-visual models like those built on transformer or 

recurrent architectures used for EHR analysis. 

Furthermore, its explanation relies on the coarseness of 

the final convolutional feature map, meaning the 

heatmaps are an approximation of focus rather than a 

pinpoint-accurate delineation of pixel-level importance. 

This potential lack of fine-grained detail can be 

insufficient in cases requiring microscopic or subtle 

pathological inspection. 

3.3.2. Synthesis: XAI as a Driver of Trust and 

Diagnostic Accuracy 

The evidence from the literature strongly suggests that 

the systematic application of these XAI techniques is a 

direct driver of improved clinical outcomes and greater 

trust. The 50 analyzed studies show that XAI is 

associated with improved trust, transparency, and 

diagnostic accuracy in medical imaging and disease 

prediction. 

In the realm of imaging, the ability of GRAD-CAM to 

provide visual evidence is often sufficient to transform a 

skeptical clinician into a confident user. Studies on 

chronic wound classification explicitly pointed to the 

"highly transparent and explainable" nature of their XAI 

tool as essential for its clinical value . 

For complex predictive tasks involving vast, 

heterogeneous datasets, SHAP’s ability to provide 

globally consistent feature attribution is invaluable. This 

not only explains why an individual patient received a 

high-risk score but also allows clinical researchers to 

discern generalizable, population-level risk factors the AI 

is leveraging—factors that may not have been previously 

prioritized by traditional statistical methods. This 

process, as seen in oncology and cardiovascular research 

, transforms the AI from a predictive black box into an 

instrument for scientific and clinical discovery. 

The cumulative evidence underscores the principle that 

transparency is strongly linked to accountability, which 

in turn is associated with improved system design. By 

revealing instances where the model makes a correct 

prediction for the wrong reason—a phenomenon 

sometimes referred to as "Clever Hans" behavior—XAI 

serves as a powerful validation tool that predicts and 

guides the development of more robust, generalizable, 

and therefore, more accurate AI systems . The use of XAI 

acts as a crucial safety net, particularly when dealing with 

the high heterogeneity and occasional bias present in 

medical datasets . 

4. Discussion 

4.1. Synthesis of Key Findings 

This systematic review confirms the transformative role 

of XAI as the essential bridge between high-performance 

AI models and practical, ethical healthcare delivery. The 

synthesis of 50 contemporary studies demonstrates that 

XAI has been effectively deployed across the entire 

spectrum of clinical medicine, successfully addressing 

the "black box" concern that has long limited AI adoption 

in this sector. Techniques like SHAP, LIME, and GRAD-

CAM have established themselves as the industry 

standards, providing the necessary interpretability to 

justify high-stakes clinical predictions and paving the 

way for trustworthy AI . The evidence is compelling: 

XAI significantly is associated with an increase in 

clinician confidence, improves transparency, and even 

acts as an internal auditing mechanism for model 

development. 

4.2. Challenges to Real-World Clinical Integration 
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Despite the technological maturity and demonstrable 

benefits of XAI, its widespread integration into routine 

clinical practice remains constrained by several 

substantial hurdles. The review's synthesis highlights that 

technical and data-quality challenges—such as 

inconsistent validation, biased datasets, and fragmented 

explanation techniques—limit real-world integration . 

● Inconsistent Validation and Reporting: A major 

challenge is the lack of standardized metrics to evaluate 

the quality of an explanation itself. Unlike model 

accuracy, which has clear metrics (e.g., AUC, F1-score), 

the "goodness" of an XAI explanation is often subjective 

or evaluated inconsistently. This heterogeneity hinders 

comparison between studies and impedes regulatory 

bodies from establishing clear thresholds for what 

constitutes a sufficient explanation . The reliance on 

qualitative assessment (e.g., "The clinician found the 

heatmap useful") rather than quantitative metrics (e.g., 

"The fidelity of the local explanation model was ") 

perpetuates this problem. 

● Data Quality and Bias: AI models are only as 

robust as the data they are trained on. If training datasets 

are racially, socioeconomically, or geographically 

biased, the resulting XAI explanation will simply reflect 

and potentially amplify that bias . While XAI can identify 

the feature that led to a biased prediction, it does not fix 

the underlying data bias. Furthermore, high-quality, 

labeled clinical data is often fragmented, incomplete, or 

not uniformly collected, creating data-quality challenges 

that XAI cannot fully mitigate. Addressing data drift is 

also critical, especially in dynamic environments like 

emergency departments where population characteristics 

can change rapidly . 

● Human-Centric Challenges: The way an 

explanation is presented is crucial. Clinicians and 

patients have different "mental models" of AI and require 

different levels and formats of explanation . An engineer 

might require the full SHAP value distribution, whereas 

a treating physician needs a concise, actionable summary 

of the most critical factors. If the explanation is too 

complex or poorly integrated into the EHR workflow, it 

is likely to be ignored, rendering the XAI technically 

present but functionally useless . The challenge lies in 

designing an explanation that is justifiable (technically 

accurate), intelligible (human-readable), and actionable 

(clinically useful). 

● Computational and Technical Complexity: 

Generating post-hoc explanations, particularly with 

model-agnostic methods like SHAP, can be 

computationally intensive and time-consuming. In fast-

paced clinical settings, where decisions must be made in 

seconds (e.g., in stroke diagnosis or intensive care 

monitoring), the latency introduced by XAI model 

execution can be a practical barrier to deployment. The 

constant demand for faster inference with simultaneous 

robust explanation requires sophisticated, high-

performance computing infrastructure often unavailable 

in typical hospital settings. 

4.3. Future Directions for XAI in Healthcare 

To overcome the challenges outlined above and ensure 

the safe, ethical, and effective scaling of XAI in 

healthcare, future research and development must focus 

on three critical areas: 

● Standardization and Regulatory Compliance: 

The most pressing need is to establish consistent, 

universally accepted frameworks for developing and 

reporting XAI findings. The review strongly suggests 

that future research must focus on standardized 

frameworks and regulatory compliance to ensure safe, 

ethical, and explainable AI use in healthcare . This 

includes defining minimum standards for explanation 

fidelity, robustness, and stability. Adherence to 

guidelines like DECIDE-AI , which focuses on bridging 

the gap between development and implementation, must 

become mandatory to ensure models are robustly tested 

before deployment. Regulatory bodies need technical 

guidance on how to evaluate XAI outputs to grant 

certification . 

● Causal and Counterfactual Explanations: Current 

XAI primarily focuses on attributing the model’s 

prediction to input features (e.g., "Feature A is associated 

with this result"). Future work needs to shift toward 

causal inference and counterfactual explanations (e.g., "If 

Feature A had a value of X instead of Y, the result would 

have been Normal"). This type of explanation is far more 

valuable to a clinician, as it directly informs treatment or 

intervention strategies ("To change the outcome, what is 

the minimum required intervention?"). Such 

advancements will transform XAI from a simple 

justification tool into a proactive clinical 

recommendation system. 

● Clinical Workflow Integration and Novel Data 

Streams: XAI outputs must be seamlessly embedded into 

existing clinical information systems without requiring 

clinicians to exit their primary EHR platform. This means 

developing intuitive, user-friendly interfaces that present 

explanations contextually, reducing cognitive load for 

clinicians . Furthermore, research must focus on XAI for 

complex, multi-modal, and continuous patient data 

streams (e.g., ECG , EEG , wearable sensors ) common 

in critical care, rather than isolated, single-diagnosis 

scenarios. The explanation must be dynamic and update 

in real-time as patient status changes. 

4.4. Limitations of the Systematic Review 

This review, while comprehensive, is subject to standard 

limitations inherent to systematic literature synthesis. 

The strict inclusion of only peer-reviewed journal articles 
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and archival papers may introduce a degree of publication 

bias, potentially favoring studies with positive or 

significant XAI findings over those reporting null or 

negative results. The search terms, though broad, may not 

have captured all relevant studies using non-standardized 

terminology for XAI, though model-agnosticism helped 

mitigate this. Finally, the synthesis is qualitative; given 

the heterogeneity of clinical domains, AI models, and 

XAI techniques across the 50 analyzed studies, a 

quantitative meta-analysis was not feasible. The 

conclusions drawn are based on the reported associations 

between XAI and outcomes, and do not constitute causal 

claims. 

4.5. Conclusion 

The movement toward XAI is not optional; it is the 

necessary next evolutionary step for AI in healthcare. 

XAI, particularly the prominent techniques like SHAP, 

LIME, and GRAD-CAM, has demonstrated its capacity 

to elevate AI performance from a mere prediction engine 

to a trustworthy, justifiable, and transparent clinical 

collaborator. While the technical and data-quality hurdles 

are substantial, a collective focus on regulatory 

standardization and user-centric explanation design will 

ensure that AI fulfills its promise to revolutionize patient 

care safely and ethically. 
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