INTELLIGENCE RESEARCH (1JAAIR)

eISSN: 3087-4270 e
Volume. 02, Issue. 10, pp. 52-63, October 2025

INTERNATIONAL JOURNAL OF ADVANCED ARTIFICIAL /P

ENHANCING TRUST AND CLINICAL ADOPTION: A SYSTEMATIC
LITERATURE REVIEW OF EXPLAINABLE ARTIFICIAL INTELLIGENCE
(XAIl) APPLICATIONS IN HEALTHCARE

Dr. Elias T. Vance
Department of Health Informatics, Biomedical Technology Research Center, London, United Kingdom

Prof. Camille A. Lefevre
Department of Health Informatics, Biomedical Technology Research Center, London, United Kingdom

Acrticle received: 13/08/2024, Article Accepted: 17/09/2025, Article Published: 31/10/2025

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the
terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and
reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Background: The transformative potential of Artificial Intelligence (Al) in healthcare is hampered by the "black box"
problem, where a lack of transparency in decision-making fundamentally undermines clinician trust and creates
barriers to clinical adoption. Explainable Artificial Intelligence (XAl) is proposed as a necessary solution to bridge
the gap between high-performance Al models and the critical need for justification and accountability in patient care.
Methods: This systematic literature review was conducted in adherence to PRISMA guidelines, analyzing literature
published between January 2020 and early 2024. A rigorous search across major databases identified 50 relevant
primary studies on XAl applications in clinical and biomedical contexts. Data extracted included the medical domain,
Al model, XAl technique, and reported impact on trust and accuracy.

Results: Analysis of the 50 studies demonstrated a wide application of XAl across diverse medical fields, including
diagnostics, medical imaging, and disease prediction. XAl—especially methods like SHAP, LIME, and GRAD-
CAM—was found to significantly enhance interpretability, transparency, and diagnostic accuracy in these
applications, successfully building clinician confidence in Al systems. The primary applications were observed in
areas like chronic wound classification, cancer diagnosis, and cardiovascular risk prediction.

Conclusion: XAl is paramount for the safe and effective integration of Al into clinical practice. However, real-world
integration is associated with persistent technical and data-quality challenges, including inconsistent validation and
biased datasets. Future efforts must prioritize the development of standardized frameworks and regulatory
compliance to ensure safe, ethical, and fully explainable Al use in healthcare.
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Explainable Artificial Intelligence (XAl), Healthcare Al, Systematic Review, Clinical Adoption, Interpretability,
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INTRODUCTION

ranging from classifying medical images to predicting
1.1. The Al Revolution in Healthcare: Promise and patient outcomes and assisting in drug discovery . The
Peril core promise lies in AI’s ability to process massive,

complex datasets—such as genomic profiles, electronic
The integration of Artificial Intelligence (Al) and health records (EHRS), and high-resolution imaging—far
Machine Learning (ML) into healthcare has ushered inan  faster and sometimes with greater precision than human
era of unprecedented potential, promising to redefine practitioners alone . Applications span virtually every
clinical workflows, improve diagnostic speed, and enable  medical sub-specialty, including radiology, pathology,
truly personalized medicine . Across the globe, Al cardiology, and oncology, positioning Al as a crucial tool
models are demonstrating high-level efficacy in tasks for future healthcare systems .
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However, this technological leap is not without its
significant challenges, particularly concerning the
deployment of sophisticated deep learning models. These
powerful models often operate as "black boxes," meaning
their internal decision-making processes are opaque and
unintuitive to human observers . While the model may
deliver a correct diagnosis, the reasoning pathway that is
associated with that decision remains obscured. This
opacity presents a critical problem for clinical adoption,
as it directly conflicts with the fundamental principles of
medical practice: accountability, justification, and patient
safety . Clinicians need to understand why a model made
a specific prediction before they can confidently
incorporate it into a treatment plan or diagnosis,
especially when dealing with high-stakes health
decisions. The inability to inspect and validate an Al’s
internal logic creates a barrier to trust and poses ethical
and legal quandaries that must be addressed before
widespread clinical integration can occur .

1.2. The Imperative for Explainable Artificial
Intelligence (XAl)

The necessity for transparency has led to the emergence
of Explainable Artificial Intelligence (XAIl). XAl is an
umbrella term for a suite of techniques designed to make
the predictions of complex ML models comprehensible
to humans. Its aim is not merely to improve the Al's
performance but, more critically, to build a system of
mutual understanding and trust between the technology
and its human users .

The core argument driving this review is that the lack of
transparency in Al decision-making fundamentally
undermines trust in healthcare applications, creating
barriers to clinical adoption . A clinician who cannot
explain an AI’s output to a patient or justify it to a peer is
unlikely to rely on it. XAl provides the necessary tools
for generating insights, often in the form of feature
importance scores or visual heatmaps, that clarify which
input data points—be they specific genes, image regions,
or vital signs—were most influential in the model's final
output .

Beyond clinical confidence, XAl addresses critical
ethical and regulatory requirements. From an ethical
standpoint, explanations help identify and mitigate
potential biases embedded in the training data, ensuring
the model's decisions are fair and equitable across
different demographic groups . Legally, as regulatory
bodies like the FDA and organizations publishing
guidelines like DECIDE-AI begin to grapple with the
complexities of Al-driven medicine, the ability to audit
and explain an Al's decision-making process is becoming
a non-negotiable requirement for clinical approval and
implementation . Therefore, XAl is not a peripheral
feature but an imperative for transforming Al from a
laboratory tool into a dependable clinical assistant.

https://aimjournals.com/index.php/ijaair

1.3. Review Objectives and Structure

Given the rapidly evolving landscape and the critical
need for XAl integration, a comprehensive synthesis of
current research is essential. This systematic literature
review aims to provide a structured overview of the
application of XAl in the healthcare domain over the past
four years.

Our primary objectives are:

1. To map the diverse medical domains where XAl
has been actively applied.

2. To identify and categorize the dominant XAl
techniques (e.g., LIME, SHAP) being utilized with
various ML models.

3. To synthesize evidence regarding the reported
association of XAl with clinician trust, transparency, and
model accuracy.

4, To discuss the inherent technical and practical
challenges associated with limiting the widespread real-
world adoption of XAl in clinical environments.

The remainder of this article is structured as follows:
Section 2 details the methodology employed for
identifying and synthesizing the literature. Section 3
presents a structured analysis of the results, categorized
by medical application and XAl technique. Section 4
offers a comprehensive discussion of the findings,
implications, challenges, and future research directions.

2. Methods
2.1. Protocol and Registration

This systematic literature review was conducted in
accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
statement . While this review involves a qualitative
synthesis of literature rather than a meta-analysis of
quantitative data, adhering to PRISMA ensures
maximum transparency and rigor in the reporting of the
search and selection process.

2.2. Search Strategy and Data Sources

A comprehensive search strategy was designed to capture
primary research articles on XAl applied to the healthcare
sector. The search was systematically executed across
major bibliographic databases, including PubMed,
Scopus, Web of Science, and IEEE Xplore.

The search period was strictly defined as January 1, 2020,
to early 2024, to capture the most contemporary research
reflecting the recent surge in XAl methodologies.

A structured set of keywords was employed, combining
pg. 53
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terms related to explainability with terms related to the
application domain:

° (Explainable Al OR XAl OR Interpretability OR
LIME OR SHAP OR GRAD-CAM) AND (Healthcare

OR Medicine OR Clinical OR Medical OR Diagnosis OR
Patient OR Health Records)
Selection Criteria

2.3. Eligibility and

(Inclusion/Exclusion)

Inclusion Criteria

Exclusion Criteria

Peer-reviewed journal articles and archival
conference papers.

Conference abstracts, presentations, editorials,
and opinions.

Articles published in English.

Non-English language articles.

Focus on the application of XAl or intrinsically
interpretable models within a medical, clinical,
or biomedical research context.

Theoretical XAl papers with no specific
healthcare application or general Al in
healthcare reviews without an XAl focus.

Original research detailing the methodology
and results of a specific XAl model.

Articles where the specific XAl technique was
not clearly identifiable or described.

Publication date between January 2020 and
early 2024.

Publications outside the defined search period.

2.4. Study Selection Process

The selection process proceeded through four stages as
recommended by PRISMA: identification, screening,
eligibility, and inclusion.

1. Identification: Initial searches were conducted
across the defined databases, and duplicate
records were removed.

2. Screening: Titles and abstracts of the retrieved
articles were independently screened against the
inclusion/exclusion criteria.

3. Eligibility: The full texts of potentially relevant
articles were retrieved and assessed in detail.
Any article that failed to meet the specific criteria
(e.g., lack of clear XAl method description, non-
clinical focus) was excluded.

4. Inclusion: The final set of papers was determined
for data extraction and synthesis.

2.5. Data Extraction and Synthesis
For each included study, the following key variables were

https://aimjournals.com/index.php/ijaair

systematically extracted:

° Publication year and primary author.

° Specific Medical Domain (e.g., Cardiology,
Radiology).

° Al Model Type (e.g., Convolutional Neural

Network (CNN), Support Vector Machine (SVM)).

° XAl Method utilized (e.g., SHAP, LIME, Grad-
CAM, intrinsically interpretable).

° Key Findings related to model performance,
interpretability, and trust.

The final synthesis involved a thematic analysis
approach. Studies were grouped by their application
domain and the type of XAl technique employed. This
thematic grouping allowed for a comprehensive
qualitative synthesis of findings, highlighting trends in
XAl usage, identifying the most effective explanation
modalities, and synthesizing the reported challenges to
implementation.

3. Results
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3.1. Study Selection and Characteristics

Following the systematic search and rigorous application
of the eligibility criteria, a total of 50 studies published
between 2020 and 2024 were included for qualitative
synthesis. This high volume of recent publications
underscores the explosive growth and recognized
importance of XAl within the medical research
community since the beginning of the decade.

The studies covered an extensive range of clinical
applications, reflecting the universal need for
transparency wherever Al is applied in healthcare. The
distribution of studies by year shows a clear upward
trend, with the highest concentration of research
appearing in 2021 and 2022, signaling a rapid maturation
of the field.

3.2. Mapping of XAl Applications Across Clinical
Domains

The applications of XAl can be broadly grouped into four
major clinical domains, with the majority focusing on
visual diagnostics and critical risk prediction:

3.2.1. Medical Imaging and Diagnostics

Imaging-based diagnostics constitutes a highly active
area for XAl research, primarily because XAl technigues
can generate visual explanations that resonate intuitively
with radiologists and pathologists.

e e Cancer Detection: XAl is extensively used in
oncology to justify the results of deep learning
models. Studies covered detailed analysis of
mammograms , interpretation of pulmonary diseases
from chest radiographs , and even the identification
and prediction of brain tumors . In these cases,
heatmaps generated by methods like Grad-CAM are
crucial, highlighting the specific tumor or lesion
regions that were associated with the diagnostic
prediction, thus increasing clinician confidence in the
model's focus .

e e Infectious Diseases and Wound Care: XAl has
played a vital role in rapidly developing models for
COVID-19 diagnosis using CT scans and X-rays .
Similarly, XAI-CWC, a highly transparent tool, was
developed for chronic wound classification , where
transparency is essential for treatment planning. XAl
has also been applied to diagnose fungal keratitis
using in vivo confocal microscopy images and to
detect tuberculosis from chest radiographs .

e e Neurological Imaging and Ophthalmology: XAl
models have been employed for retinoblastoma
diagnosis, using LIME and SHAP to interpret deep
learning model decisions on ocular images . The use
of XAl in analyzing cerebrospinal fluid for

https://aimjournals.com/index.php/ijaair

diagnostics further demonstrates
complex neurological conditions .

its utility in

3.2.2. Disease Prediction and Risk Assessment

This domain leverages XAl to explain complex,
multivariate risk models, often utilizing electronic health
records (EHRs) or molecular data.

° Cardiovascular and Metabolic Risk: Studies
focusing on cardiovascular event risk prediction use XAl
to identify influential molecular data or analyze ECG
signals . XAl was also applied to enhance a prediction
model for heart failure survival and to predict
cardiovascular outcomes using EHRs .

° Neurodegenerative Diseases: For conditions like
Alzheimer's disease (AD), XAl is used to interpret multi-
modal detection and prediction models . By explaining
which features (e.g., MRI data, cognitive scores, genetic
markers) were associated with an AD prediction,
clinicians gain insight into the disease's progression
factors.

° Acute Care and Risk Factors: XAl has been used
for predicting the need for ventilator support and
mortality in COVID-19 patients , predicting deterioration
risk in hepatitis patients , and predicting readmission risk
among frail patients . The interpretability provided is
crucial for early intervention strategies.

3.2.3. Genetics, Drug Discovery, and Personalized
Medicine

In highly complex, high-dimensional data environments
like genomics and proteomics, XAl helps sift through
millions of data points to identify causal or predictive
features.

° Biomarker Identification: XAl has been
instrumental in identifying biologically relevant gene
expression patterns in longitudinal human studies |,
particularly in obesity research. It has also been applied
to precision medicine in acute myeloid leukemia , where

understanding the model's reliance on specific
biomarkers is essential for tailoring treatment.
° Drug Development: XAl plays a key role in drug

discovery, helping researchers understand why a model
predicts a compound will be active or toxic . This can
accelerate the discovery pipeline by focusing laboratory
efforts on compounds with justifiable predicted efficacy.

3.2.4. Function and Behavioral Health
XAl is increasingly applied to monitor human function
and behavioral health, where the context of the

explanation is as important as the prediction itself.

° Mental and Neurological Health: XAl is being
pg. 55
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used to model biomedical mental disorder diagnoses and
to tackle the complexity of mental health research by
interpreting models of pediatric psychiatric conditions .
In neurology, XAl models have interpreted stroke-
impaired electromyography patterns  and predicted
stroke based on EEG signals .

° Functional Monitoring: XAl has been applied to
interpret wearable sensor data for gait analysis, helping
to identify patients with osteopenia and sarcopenia in
daily life , and for falls prediction .

3.3. Analysis of Dominant XAl Techniques

The review confirms that the overwhelming majority of
contemporary XAl applications in healthcare rely on
model-agnostic, post-hoc explanation techniques . This
preference is pragmatic: it allows researchers to deploy
the most powerful, often opaque, deep learning
architectures while still providing a subsequent,
understandable rationale for a given decision. This
synthesis of the 50 analyzed studies demonstrates
unequivocally that Explainable Artificial Intelligence
(XAIl)—especially methods like SHAP, LIME, and
GRAD-CAM—is associated with enhanced
interpretability and builds clinician confidence in Al
systems by translating complex algorithmic outputs into
clinically actionable insights.

The most frequently employed techniques identified
across the literature are SHAP, LIME, and GRAD-CAM.
While a small number of studies utilized intrinsically
interpretable models, particularly for low-dimensional or
simplified risk models , their scope is limited by the
exponential rise of deep learning in domains like medical
imaging. Therefore, the focus of this analysis is on the
mechanisms and limitations of the three dominant post-
hoc approaches, which form the technical bedrock of
XAl in modern clinical research.

3.3.1. Detailed Mechanisms of Dominant XAl
Techniques

Understanding the internal workings of these XAl
methods is crucial, as their underlying mathematical
assumptions directly impact the faithfulness and utility of
the explanation provided to the clinician. Each method
approaches the problem of interpretability from a distinct
theoretical foundation, leading to different strengths and
weaknesses in clinical contexts.

3.3.1.1. SHAP (SHapley Additive exPlanations)

SHAP represents a conceptual leap in model
explainability by unifying several existing methods (such
as LIME, DeepLIFT, and feature importance methods)
under a single theoretical framework rooted in
cooperative game theory . The fundamental goal of
SHAP is to assign a unique, justifiable importance

https://aimjournals.com/index.php/ijaair

value—a Shapley value—to every feature for a specific
prediction.

Mechanism and Theoretical Foundation:

In cooperative game theory, the Shapley value,
developed by Lloyd Shapley, is the only method that
satisfies a set of desirable properties: local accuracy (the
explanation must match the model output for the instance
being explained), missingness (features whose value is
zero should have no impact), and consistency (if a
feature's contribution increases, its importance should not
decrease).

In the context of a machine learning model, the "game"
is the prediction task, the "players" are the input features,
and the "payout" is the difference between the actual
prediction and the average expected prediction (the
baseline). The SHAP value for a feature is its weighted
average marginal contribution across all possible feature
coalitions (all permutations in which the feature could be
introduced).

The SHAP explanation model is an additive feature
attribution method:

where is the model prediction, is the baseline
expectation (average prediction), is a simplified input
feature (e.g., ), and is the SHAP value of feature . The
Shapley value () for feature is calculated as:

where is the set of all features, is a subset of features
without feature , and is the prediction function with only
features in present.

Clinical Utility and Computational Challenges:

SHAP’s key clinical advantage is its global consistency.
Because the calculation is derived from a robust
theoretical foundation, a SHAP value for a feature can be
interpreted consistently across different predictions. For
instance, in predicting lung and bronchus cancer
mortality rates , SHAP can consistently quantify how
socioeconomic factors or environmental exposures are
associated with the risk compared to the population
average. This consistency is essential for comparative
clinical analysis and regulatory auditing . SHAP is
frequently applied to tabulate data like EHRs and
genetics, as seen in risk prediction of cardiovascular
events using molecular data .

However, the major limitation is computational
complexity. Calculating the exact Shapley value requires
evaluating the model times for a model with features,
which is often infeasible for high-dimensional clinical
data (e.g., millions of pixels in an image or thousands of
genetic markers). This has led to the development of
approximations:
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° Kernel SHAP: A model-agnostic approximation
that employs LIME’s local surrogate modeling approach
but enforces the desirable Shapley properties. It samples
feature coalitions instead of checking all of them.

° Tree SHAP: A highly optimized version for tree-
based models (like XGBoost or Random Forest) that
achieves exact calculation in polynomial time, making it
much faster in applicable scenarios.

° Deep SHAP: An approximation method
specifically for deep learning models that uses DeepLIFT
to approximate the Shapley values.

The reliance on approximations implies the resulting
SHAP value is an approximation rather than truly exact,
introducing a potential source of error in the explanation,
particularly in time-sensitive clinical deployment. The
trade-off between computational burden and explanation
fidelity is a persistent challenge in high-throughput
healthcare settings.

3.3.1.2. LIME (Local Interpretable Model-agnostic
Explanations)

LIME is a pioneering model-agnostic technique that
focuses on providing an explanation that is locally
faithful—meaning it accurately explains the model’s
behavior around a specific prediction, even if the overall
model is highly complex .

Mechanism and Theoretical Foundation:

LIME operates on the principle that while a complex
model might be non-linear globally (e.g., a deep neural
network), it can be approximated by a simple,
interpretable model (e.g., linear regression or a shallow
decision tree) within the local vicinity of a single data
instance, .

The process for a single prediction is as follows:

1. Perturbation: LIME first generates a large
number of perturbed, or slightly modified, data samples
around the input instance . For image data, this might
involve turning small sections of the image grey ; for text,
it involves omitting words.

2. Prediction and Weighting: The complex "black
box" model is used to predict the output for all these
perturbed samples. Each perturbed sample is then
weighted by its proximity to the original instance (closer
samples receive higher weights), often using an
exponential kernel.

3. Local Surrogate Model: An interpretable model
() is trained on these weighted, perturbed samples and
their predictions. The goal of is to minimize the loss (),
which measures how well approximates , while keeping
simple (minimizing its complexity, ):
https://aimjournals.com/index.php/ijaair

where is the black-box model, is the family of
interpretable models, and is the proximity measure
around . The resulting explanation is a simple, typically
linear, model that explains the prediction of only within
the small localized region defined by .

Clinical Utility and Limitations:

LIME’s strength is in its simplicity and speed, making it
suitable for generating explanations on-the-fly for real-
time diagnostics . Furthermore, its model-agnostic nature
means it can be applied to virtually any Al in clinical use,
from predicting mental disorder diagnosis to analyzing
blood tests for COVID-19 . The output is a list of features
(or segments, in the case of images) with weights
indicating their local contribution to the specific
outcome. Its application in retinoblastoma diagnosis
demonstrated its ability to interpret deep learning models
effectively .

The primary limitation of LIME is its inherent focus on
local fidelity at the expense of global consistency. The
explanation generated for a patient's diagnosis is only
guaranteed to be accurate in the small neighborhood of
that patient's data. If two patients have very similar
profiles but one feature is slightly different, LIME might
produce vastly different explanations that are both locally
true but appear contradictory when compared side-by-
side. This lack of global coherence can be confusing for
clinicians seeking to establish general patterns or rules
from the AI’s behavior. Furthermore, the selection of the
size and weighting of the local neighborhood is non-
trivial and can significantly influence the resulting
explanation, leading to instability or lack of robustness in
the explanations themselves.

3.3.1.3. GRAD-CAM
Activation Mapping)

(Gradient-weighted Class

Unlike the model-agnostic SHAP and LIME, GRAD-
CAM is a model-specific technique designed to provide
visual explanations for Convolutional Neural Networks
(CNNs), making it the dominant XAl method in medical
imaging .

Mechanism and Theoretical Foundation:

CNNs excel in medical imaging tasks, such as X-ray and
CT interpretation, by processing data through multiple
layers of convolutions to extract hierarchical features.
GRAD-CAM answers the question: "Which regions in
the input image were most important for the model's final
classification decision (e.g., "Tuberculosis' or 'Normal')?"

GRAD-CAM uses the gradients of the target concept (the
predicted class score) flowing into the final convolutional
layer of the CNN. The final convolutional layer is chosen
because it retains rich spatial information about the input
image, unlike the fully connected layers that follow,
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which often lose spatial resolution.

1. Gradient Calculation: The gradient of the class
score () with respect to the feature map () of the last
convolutional layer is calculated: .

2. Global Average Pooling: These gradients are
then globally averaged across the spatial dimensions () to
obtain a set of neuron importance weights () for the target
class . This weight represents the importance of feature
map for the decision .

3. Weighted Sum and ReLU: The final Class
Activation Map () is obtained by performing a weighted
sum of the forward activation maps () using the
importance weights () and then applying a Rectified
Linear Unit (ReLU) function. The ReLU ensures only
features that positively influence the target class decision
are highlighted:

The resulting map is then up-sampled to the resolution of
the input image and overlaid as a heatmap.

Clinical Utility and Limitations:

GRAD-CAM’s output is a high-resolution heatmap
overlaid directly onto the input image, visually
demonstrating the evidence base for the AI’s diagnosis .
This format is highly compatible with the established
clinical workflow of radiologists and pathologists, being
widely used in studies for lung cancer , mammography ,
and infectious disease detection . This direct visual
evidence is strongly associated with increased clinical
confidence and utility. The visual explanation allows the
clinician to quickly verify if the Al is focusing on
clinically relevant pathology or, conversely, if it is
relying on spurious correlations (e.g., an unrelated
metallic artifact or label), which serves as an important
validation step.

The main limitation is its model-specificity: GRAD-
CAM and its variants are inherently tied to the
architecture of CNNs and cannot be readily applied to
non-visual models like those built on transformer or
recurrent architectures used for EHR analysis.
Furthermore, its explanation relies on the coarseness of
the final convolutional feature map, meaning the
heatmaps are an approximation of focus rather than a
pinpoint-accurate delineation of pixel-level importance.
This potential lack of fine-grained detail can be
insufficient in cases requiring microscopic or subtle
pathological inspection.

3.3.2. Synthesis: XAl as a Driver of Trust and
Diagnostic Accuracy

The evidence from the literature strongly suggests that

the systematic application of these XAl techniques is a
direct driver of improved clinical outcomes and greater

https://aimjournals.com/index.php/ijaair

trust. The 50 analyzed studies show that XAl is
associated with improved trust, transparency, and
diagnostic accuracy in medical imaging and disease
prediction.

In the realm of imaging, the ability of GRAD-CAM to
provide visual evidence is often sufficient to transform a
skeptical clinician into a confident user. Studies on
chronic wound classification explicitly pointed to the
"highly transparent and explainable" nature of their XAl
tool as essential for its clinical value .

For complex predictive tasks involving vast,
heterogeneous datasets, SHAP’s ability to provide
globally consistent feature attribution is invaluable. This
not only explains why an individual patient received a
high-risk score but also allows clinical researchers to
discern generalizable, population-level risk factors the Al
is leveraging—factors that may not have been previously
prioritized by traditional statistical methods. This
process, as seen in oncology and cardiovascular research
, transforms the Al from a predictive black box into an
instrument for scientific and clinical discovery.

The cumulative evidence underscores the principle that
transparency is strongly linked to accountability, which
in turn is associated with improved system design. By
revealing instances where the model makes a correct
prediction for the wrong reason—a phenomenon
sometimes referred to as "Clever Hans" behavior—XAl
serves as a powerful validation tool that predicts and
guides the development of more robust, generalizable,
and therefore, more accurate Al systems . The use of XAl
acts as a crucial safety net, particularly when dealing with
the high heterogeneity and occasional bias present in
medical datasets .

4. Discussion
4.1. Synthesis of Key Findings

This systematic review confirms the transformative role
of XAl as the essential bridge between high-performance
Al models and practical, ethical healthcare delivery. The
synthesis of 50 contemporary studies demonstrates that
XAl has been effectively deployed across the entire
spectrum of clinical medicine, successfully addressing
the "black box" concern that has long limited Al adoption
in this sector. Techniques like SHAP, LIME, and GRAD-
CAM have established themselves as the industry
standards, providing the necessary interpretability to
justify high-stakes clinical predictions and paving the
way for trustworthy Al . The evidence is compelling:
XAl significantly is associated with an increase in
clinician confidence, improves transparency, and even
acts as an internal auditing mechanism for model
development.

4.2. Challenges to Real-World Clinical Integration
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Despite the technological maturity and demonstrable
benefits of XAl, its widespread integration into routine
clinical practice remains constrained by several
substantial hurdles. The review's synthesis highlights that
technical and data-quality challenges—such as
inconsistent validation, biased datasets, and fragmented
explanation techniques—Ilimit real-world integration .

° Inconsistent Validation and Reporting: A major
challenge is the lack of standardized metrics to evaluate
the quality of an explanation itself. Unlike model
accuracy, which has clear metrics (e.g., AUC, F1-score),
the "goodness" of an XAl explanation is often subjective
or evaluated inconsistently. This heterogeneity hinders
comparison between studies and impedes regulatory
bodies from establishing clear thresholds for what
constitutes a sufficient explanation . The reliance on
gualitative assessment (e.g., "The clinician found the
heatmap useful™) rather than quantitative metrics (e.g.,
"The fidelity of the local explanation model was ")
perpetuates this problem.

° Data Quality and Bias: Al models are only as
robust as the data they are trained on. If training datasets
are racially, socioeconomically, or geographically
biased, the resulting XAl explanation will simply reflect
and potentially amplify that bias . While XAl can identify
the feature that led to a biased prediction, it does not fix
the underlying data bias. Furthermore, high-quality,
labeled clinical data is often fragmented, incomplete, or
not uniformly collected, creating data-quality challenges
that XAl cannot fully mitigate. Addressing data drift is
also critical, especially in dynamic environments like
emergency departments where population characteristics
can change rapidly .

) Human-Centric Challenges: The way an
explanation is presented is crucial. Clinicians and
patients have different "mental models" of Al and require
different levels and formats of explanation . An engineer
might require the full SHAP value distribution, whereas
a treating physician needs a concise, actionable summary
of the most critical factors. If the explanation is too
complex or poorly integrated into the EHR workflow, it
is likely to be ignored, rendering the XAl technically
present but functionally useless . The challenge lies in
designing an explanation that is justifiable (technically
accurate), intelligible (human-readable), and actionable
(clinically useful).

° Computational and Technical Complexity:
Generating post-hoc explanations, particularly with
model-agnostic methods like SHAP, can be
computationally intensive and time-consuming. In fast-
paced clinical settings, where decisions must be made in
seconds (e.g., in stroke diagnosis or intensive care
monitoring), the latency introduced by XAl model
execution can be a practical barrier to deployment. The
constant demand for faster inference with simultaneous
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robust explanation requires sophisticated, high-
performance computing infrastructure often unavailable
in typical hospital settings.

4.3. Future Directions for XAl in Healthcare

To overcome the challenges outlined above and ensure
the safe, ethical, and effective scaling of XAl in
healthcare, future research and development must focus
on three critical areas:

° Standardization and Regulatory Compliance:
The most pressing need is to establish consistent,
universally accepted frameworks for developing and
reporting XAl findings. The review strongly suggests
that future research must focus on standardized
frameworks and regulatory compliance to ensure safe,
ethical, and explainable Al use in healthcare . This
includes defining minimum standards for explanation
fidelity, robustness, and stability. Adherence to
guidelines like DECIDE-AI , which focuses on bridging
the gap between development and implementation, must
become mandatory to ensure models are robustly tested
before deployment. Regulatory bodies need technical
guidance on how to evaluate XAl outputs to grant
certification .

° Causal and Counterfactual Explanations: Current
XAI primarily focuses on attributing the model’s
prediction to input features (e.g., "Feature A is associated
with this result"). Future work needs to shift toward
causal inference and counterfactual explanations (e.g., "If
Feature A had a value of X instead of Y, the result would
have been Normal"). This type of explanation is far more
valuable to a clinician, as it directly informs treatment or
intervention strategies ("To change the outcome, what is
the  minimum required intervention?").  Such
advancements will transform XAl from a simple

justification  tool into a  proactive clinical
recommendation system.
° Clinical Workflow Integration and Novel Data

Streams: XAl outputs must be seamlessly embedded into
existing clinical information systems without requiring
clinicians to exit their primary EHR platform. This means
developing intuitive, user-friendly interfaces that present
explanations contextually, reducing cognitive load for
clinicians . Furthermore, research must focus on XAl for
complex, multi-modal, and continuous patient data
streams (e.g., ECG , EEG , wearable sensors ) common
in critical care, rather than isolated, single-diagnosis
scenarios. The explanation must be dynamic and update
in real-time as patient status changes.

4.4. Limitations of the Systematic Review
This review, while comprehensive, is subject to standard
limitations inherent to systematic literature synthesis.

The strict inclusion of only peer-reviewed journal articles
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and archival papers may introduce a degree of publication
bias, potentially favoring studies with positive or
significant XAl findings over those reporting null or
negative results. The search terms, though broad, may not
have captured all relevant studies using non-standardized
terminology for XAl, though model-agnosticism helped
mitigate this. Finally, the synthesis is qualitative; given
the heterogeneity of clinical domains, Al models, and
XAl techniques across the 50 analyzed studies, a
guantitative meta-analysis was not feasible. The
conclusions drawn are based on the reported associations
between XAl and outcomes, and do not constitute causal
claims.

4.5. Conclusion

The movement toward XAl is not optional; it is the
necessary next evolutionary step for Al in healthcare.
XAl, particularly the prominent techniques like SHAP,
LIME, and GRAD-CAM, has demonstrated its capacity
to elevate Al performance from a mere prediction engine
to a trustworthy, justifiable, and transparent clinical
collaborator. While the technical and data-quality hurdles
are substantial, a collective focus on regulatory
standardization and user-centric explanation design will
ensure that Al fulfills its promise to revolutionize patient
care safely and ethically.
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