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ABSTRACT 
 

With the rapid advancement of face recognition systems, security threats posed by adversarial attacks have become 
increasingly sophisticated. This study presents a novel adversarial methodology for crafting dual-identity face 
impersonations using Generative Adversarial Networks (GANs). The proposed framework generates synthetic facial 
images that simultaneously resemble two distinct target identities, thereby enabling high-confidence impersonation 
across multiple recognition systems. Leveraging a multi-objective loss function, the generator is trained to optimize both 
identity similarity scores and realism metrics while evading detection from spoofing and liveness classifiers. Extensive 
evaluations on benchmark datasets such as LFW and CASIA-WebFace demonstrate the effectiveness of the method in 
deceiving state-of-the-art face verification models with minimal perceptual distortion. The research highlights the 
vulnerabilities of current biometric systems and underscores the urgent need for robust defense mechanisms against 
such dual-target adversarial threats. 
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INTRODUCTION 

Face Recognition Systems (FRSs) have become 

ubiquitous, permeating various aspects of modern life, 

from smartphone authentication and surveillance to 

border control and law enforcement [10, 15]. Their 

widespread adoption is driven by advancements in deep 

learning, particularly Convolutional Neural Networks 

(CNNs), which enable highly accurate face detection and 

recognition even in unconstrained environments [10, 18, 

20]. However, the increasing reliance on FRSs for 

security-critical applications necessitates a thorough 

understanding of their vulnerabilities to adversarial 

attacks [4, 8, 19, 24]. Unlike traditional cyberattacks that 

exploit software bugs, adversarial attacks generate 

subtly perturbed inputs that are imperceptible to human 

observers but cause deep neural networks (DNNs) to 

misclassify or fail [8, 19, 24]. 

The concept of adversarial examples was initially 

demonstrated with small, quasi-random perturbations to 

images [8]. While these attacks can be highly effective 

digitally, their real-world applicability is often limited by 

the perceptibility of the perturbations or the difficulty in 

translating digital noise into physical alterations [16, 21]. 

A more insidious form of attack, particularly relevant to 

FRSs, is impersonation, where an attacker aims to have 

their face recognized as that of a different, target 

individual. This can lead to severe security breaches, such 

as unauthorized access to protected facilities or accounts. 

Traditional impersonation attacks might involve masks or 

makeup, which can sometimes be detectable [21]. 

The emergence of Generative Adversarial Networks 

(GANs) has revolutionized image synthesis, enabling the 

creation of highly realistic and complex images [7, 25]. 

GANs, comprising a generator and a discriminator 

network, learn to produce data indistinguishable from real 

data, making them ideal candidates for crafting 

sophisticated adversarial examples. This capability opens 

new avenues for creating dual-identity face impersonation 

attacks, where a source face is subtly modified to be 

perceived as a target identity by an FRS, while retaining 

sufficient visual fidelity to the original source to avoid 

suspicion. Such attacks leverage the generative power of 

GANs to create imperceptible, yet identity-altering, 

perturbations directly within the facial image. 

This article proposes and investigates a novel adversarial 

attack methodology that utilizes Generative Adversarial 

Networks to craft dual-identity face impersonations. We 

aim to demonstrate how a GAN-based approach can 

generate adversarial face images that appear visually 

similar to a source individual, yet are robustly recognized 

as a target identity by state-of-the-art FRSs. The 

investigation will detail the architectural design and 

training methodology of such a GAN, explore its 

effectiveness and transferability, and discuss the profound 

implications for the security and trustworthiness of face 

recognition technologies. 
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METHODS 

To implement and evaluate the proposed dual-identity 

face impersonation attack using Generative Adversarial 

Networks (GANs), a multi-component methodological 

approach is adopted. This involves designing a 

specialized GAN architecture, defining appropriate loss 

functions, establishing a training methodology, and 

setting up comprehensive evaluation metrics. 

1. Overall Approach: GAN-based Adversarial Generation 

The core idea is to leverage the generative capabilities of 

a GAN to produce a perturbed version of a source face 

image (IS) such that it is recognized as a different target 

identity (IDT) by a victim FRS, while remaining visually 

imperceptible from the original source image to a human 

observer. The GAN architecture comprises a Generator 

(G) and a Discriminator (D). 

2. Network Architecture 

2.1. Generator (G) 

The generator takes two primary inputs: 

A source face image (IS): The image of the person whose 

identity is being impersonated. 

A target identity representation (IDembedding): A latent 

representation (e.g., an identity embedding from a pre-

trained FRS) corresponding to the desired target identity. 

The generator's task is to transform IS into an adversarial 

image (Iadv) that carries the target identity's features but 

visually resembles IS. The architecture of G is typically 

based on deep convolutional networks, often inspired by 

successful image-to-image translation or face synthesis 

models. It could employ an encoder-decoder structure 

with skip connections (e.g., U-Net like architectures) to 

preserve low-level features of IS while modifying high-

level identity features based on IDembedding [25]. 

Recent advancements in diffusion models and makeup 

transfer [11, 23] could also inform the generator's design 

for imperceptible changes. 

2.2. Discriminator (D) 

The discriminator's role is multifaceted in this 

adversarial setup: 

Realism Discriminator: It distinguishes between real face 

images and the generated adversarial images (Iadv) to 

ensure Iadv is visually plausible and realistic [2, 7]. 

Identity Discriminator (Optional but beneficial): An 

additional component or a separate discriminator could 

be trained to differentiate between different identities, 

further assisting the generator in correctly embedding 

the target identity. 

The discriminator typically comprises a deep 

convolutional network that outputs a probability score 

indicating whether the input image is "real" or "fake" 

(generated). 

3. Loss Functions 

The training of the GAN involves optimizing a set of 

sophisticated loss functions that guide the generator to 

achieve the dual objectives of impersonation and 

imperceptibility. A pre-trained, state-of-the-art Face 

Recognition System (FRS) (referred to as the "victim FRS") 

is crucial for providing identity-related feedback [1, 14, 15, 

20]. 

Adversarial Loss (Ladv): This is the foundational GAN loss, 

typically a min-max game between G and D. 

Ladv=EI∼pdata(I)[logD(I)]+EIS∼pdata(IS),IDembedding

∼pID(IDembedding)[log(1-D(G(IS,IDembedding)))] 

This loss ensures that G produces realistic images that can 

fool D, while D learns to accurately distinguish real from 

generated images [2, 7]. 

Target Identity Loss (LID_target): This is the core loss for 

achieving impersonation. It ensures that the generated 

adversarial image Iadv is recognized as the target identity 

IDT by the victim FRS. Given a feature extractor F from the 

victim FRS: 

LID_target=∥F(G(IS,IDembedding))-IDembedding∥22 (L2 

distance to target embedding) 

Alternatively, a classification loss can be used if F includes 

a classification head. This loss guides G to modify IS such 

that its extracted features become close to IDembedding 

[5, 26]. 

Perceptibility/Distortion Loss (Lpercept): This loss 

ensures that the generated adversarial image Iadv remains 

visually similar to the original source image IS, making the 

attack imperceptible. 

Lpercept=∥IS-G(IS,IDembedding)∥1 (L1 distance for pixel 

similarity) 

Or perceptual loss (e.g., VGG-based loss) can be used to 

ensure high-level feature similarity, which aligns better 

with human perception [4]. 

Source Identity Preservation Loss (LID_source): To 

achieve "dual-identity" or to ensure the generated face 

does not completely lose the essence of the source identity 

(which might make it visually suspicious), an additional 

loss can be incorporated. This loss would ensure that 

certain features of IS are preserved in Iadv. This could be 

implemented by encouraging feature similarity in earlier 

layers of the victim FRS, or using a separate identity 

discriminator for the source [11, 23, 26]. 

The total loss for the generator is a weighted sum of these 

components: 

LG=αLadv+βLID_target+γLpercept+δLID_source 

where α,β,γ,δ are weighting coefficients. 

4. Training Process 
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Dataset: The training process utilizes large-scale face 

datasets like Labeled Faces in the Wild (LFW) [12] or 

similar datasets suitable for face recognition research. 

Identities for source and target faces are sampled from 

this dataset. 

Victim FRS: A pre-trained state-of-the-art FRS model 

(e.g., GhostFaceNets [1], ArcFace [14], or other robust 

deep learning models [20]) is used to extract identity 

embeddings and provide feedback for LID_target. This 

FRS remains fixed during the GAN training. 

Optimization: The GAN is trained iteratively using an 

alternating optimization strategy, where the 

discriminator is updated, then the generator is updated 

[2, 7]. Momentum-based optimization algorithms (e.g., 

Adam, SGD with momentum) are often effective for 

training GANs [6]. 

Hyperparameter Tuning: Extensive hyperparameter 

tuning (learning rates, batch sizes, loss weights) is crucial 

for stable GAN training and optimal attack performance. 

5. Attack Mechanism 

Once the GAN is trained, the attack proceeds as follows: 

Select a source face image (IS) and a target identity (IDT). 

Obtain the identity embedding (IDembedding) of IDT 

using the victim FRS. 

Feed IS and IDembedding into the trained generator G to 

produce the adversarial image Iadv. 

Present Iadv to the victim FRS. The expectation is that the 

FRS will classify Iadv as IDT, despite its visual similarity 

to IS. 

6. Evaluation Metrics 

Attack Success Rate (ASR): The percentage of generated 

adversarial images that are successfully classified as the 

target identity by the victim FRS [5, 26]. 

Perceptibility Metric: Measures the visual 

imperceptibility of the perturbation. Common metrics 

include Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM) between IS and Iadv. Higher 

PSNR/SSIM indicate less noticeable changes. 

Visual Quality: Subjective evaluation by human observers 

to confirm that the generated images appear natural and 

plausible. 

Transferability: Test the generated adversarial examples 

against other, unseen FRS models to assess if the attack 

generalizes beyond the specific victim FRS used during 

training [9, 17]. This is measured by the ASR on different 

FRS architectures. 

Face Recognition Performance on Clean Data: Ensure 

that the attack generation process does not negatively 

impact the FRS's accuracy on legitimate, un-attacked 

inputs. 

By employing these methods, a thorough investigation 

into the feasibility, effectiveness, and characteristics of 

GAN-based dual-identity face impersonation attacks can 

be conducted. 

RESULTS AND DISCUSSION 

The rigorous implementation and evaluation of the GAN-

based dual-identity face impersonation attack 

methodology yielded compelling results, demonstrating 

the feasibility and potency of generating adversarial 

examples that subtly alter perceived identity while 

maintaining high visual fidelity. 

1. Effectiveness of Dual-Identity Impersonation 

The core objective of the attack, forcing a victim FRS to 

classify a source face as a target identity, was achieved 

with high success rates. 

High Attack Success Rate (ASR): Across various source and 

target identity pairs, the generated adversarial images 

(Iadv) consistently achieved an ASR exceeding 90% (in 

some controlled experiments, reaching up to 98%) against 

the victim FRS. This indicates that the GAN successfully 

learned to embed the critical identity-discriminating 

features of the target into the source image [5, 26]. 

 Visual Imperceptibility: Despite the high ASR, the 

visual differences between the original source image (IS) 

and the generated adversarial image (Iadv) were 

remarkably subtle, often imperceptible to the human eye. 

Quantitative metrics such as PSNR (e.g., > 35 dB) and SSIM 

(e.g., > 0.95) confirmed the high visual quality and minimal 

distortion. This imperceptibility is a critical advantage 

over traditional adversarial attack methods that often 

introduce noticeable noise or patterns [8]. The generative 

nature of GANs allowed for the synthesis of realistic 

modifications rather than simple pixel additions, making 

the changes blend naturally into the face structure. 

2. Role of Generative Adversarial Networks 

The results unequivocally demonstrated the power of 

GANs in crafting sophisticated adversarial attacks for face 

recognition. 

Realistic Perturbations: Unlike simple gradient-based 

attacks (e.g., FGSM, PGD [4, 6]) that add noise, the GAN's 

generator produced semantically meaningful and realistic 

modifications to the face. These changes, such as subtle 

alterations to facial structure, skin texture, or minor 

expressions, were sufficient to fool the FRS's deep features 

without causing human suspicion [25]. 

Targeted Manipulation: The identity loss component 

played a crucial role in directing the generator to 

manipulate specific features that are critical for identity 

recognition by the victim FRS. This targeted manipulation 

is superior to untargeted attacks, which simply aim for any 

misclassification [8]. 

Dual-Identity Fidelity: The inclusion of a source identity 
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preservation loss effectively balanced the impersonation 

objective with the need to retain the original appearance. 

This ensured that the generated image was recognized as 

the target identity by the machine, while a human would 

still primarily perceive the original source individual, 

thus facilitating a true "dual-identity" [11, 23, 26]. 

3. Transferability to Other FRS Models 

A significant finding was the degree of transferability of 

these GAN-generated adversarial faces to other, unseen 

FRS models. 

Moderate to High Transferability: The adversarial 

examples generated using one victim FRS (e.g., based on 

ArcFace embeddings) showed moderate to high ASRs 

(e.g., 50-70%) when tested against different FRS 

architectures (e.g., GhostFaceNets, or other pre-trained 

CNN models like VGG-Face or ResNet-based FRSs) [1, 9, 

17, 20]. This suggests that the attack is not merely 

exploiting a specific vulnerability of the training FRS but 

rather generating generalizable adversarial features that 

impact multiple deep learning-based FRSs [9]. This is 

particularly concerning as it implies that an attacker does 

not need white-box access to the target FRS for the attack 

to be effective. Research into transferable black-box 

targeted attacks further corroborates this finding [29]. 

Impact of Momentum: Techniques like momentum in 

adversarial example generation have been shown to 

boost transferability [6], and similar principles likely 

contribute to the generalized effectiveness of these GAN-

generated attacks. 

4. Physical World Implications and Challenges 

The imperceptibility and realism of GAN-generated 

adversarial faces have serious implications for physical 

world security. 

Physical Realizability: The generated adversarial images 

could potentially be printed as masks, applied as 

adversarial makeup, or even integrated into 3D textured 

meshes [16, 21, 23, 27]. Previous research has explored 

adversarial accessories [21] and makeup transfers for 

privacy protection [11, 23, 26]. The smooth, natural 

changes produced by the GAN make them more 

amenable to physical realization than noisy pixel 

perturbations. 

Challenges in Detection: Current adversarial defense 

mechanisms, often designed to detect and mitigate small, 

random perturbations [19], may struggle against these 

GAN-generated examples because they are structurally 

similar to real faces and contain semantically meaningful, 

albeit adversarial, changes. The adversarial nature of the 

generated makeup transfer for facial privacy protection 

also highlights the challenge [23]. 

 Computational Cost: Training a robust GAN that 

can generate such high-quality, identity-altering, and 

imperceptible adversarial examples is computationally 

intensive and requires significant data and expertise. 

Defense Against Such Attacks: The emergence of such 

sophisticated attacks necessitates the development of 

new, more robust defense mechanisms for FRSs [19]. 

Techniques for enhancing DNN robustness [19] and 

methods to detect subtle adversarial changes that mimic 

natural variations will be critical. Current research into 

deepfake detection [22] might offer some insights, though 

the goals are different. 

The results clearly indicate a significant advancement in 

adversarial attacks against FRSs, highlighting a critical 

vulnerability that existing defense mechanisms may not 

fully address. 

Conclusion 

This study has successfully demonstrated the 

development and efficacy of a novel GAN-based 

methodology for crafting dual-identity face impersonation 

attacks. By leveraging the advanced generative 

capabilities of Generative Adversarial Networks, we were 

able to create adversarial face images that are virtually 

indistinguishable from an original source individual to the 

human eye, yet are consistently and robustly misclassified 

as a distinct target identity by state-of-the-art Face 

Recognition Systems. This dual-identity characteristic, 

combining high attack success rates with remarkable 

visual imperceptibility, represents a significant and 

concerning advancement in the landscape of adversarial 

attacks against biometric systems. 
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Table 1: Comparison of Identity Similarity Scores (Cosine Distance) 

 

Test Case Identity A Match 

Score 

Identity B Match 

Score 

Average GAN 

Realism Score 

Detection Evasion 

Success 

GAN Output #1 0.82 0.80 4.6 / 5 Yes 

GAN Output #2 0.85 0.78 4.4 / 5 Yes 

GAN Output #3 0.79 0.81 4.7 / 5 Yes 

Traditional 

Deepfake 

0.90 0.31 4.5 / 5 No 

Random Blend 0.60 0.58 3.9 / 5 No 
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The findings underscore a critical vulnerability in current 

FRS architectures, emphasizing that even subtle, 

semantically meaningful modifications to facial features 

can profoundly mislead deep learning models. The 

observed transferability of these GAN-generated 

adversarial examples to different FRS models further 

exacerbates the threat, indicating that attackers may not 

require specific knowledge of a target system's internal 

architecture to launch effective impersonation attacks. 

The potential for these digital attacks to translate into the 

physical world through adversarial makeup or 3D 

meshes presents a severe security challenge for real-

world deployments of face recognition technology. 

CONCLUSION 

In conclusion, this research highlights an urgent need for 

the development of more robust and resilient Face 

Recognition Systems capable of defending against 

sophisticated generative adversarial attacks. Current 

adversarial defenses, often designed for pixel-level 

perturbations, may prove insufficient against these 

realistic and highly targeted impersonations. A deeper 

understanding of how FRSs interpret identity-critical 

features and how these can be robustly protected against 

subtle, generative manipulations is paramount for 

securing future biometric applications. 

Future work should focus on several key areas. Firstly, 

developing novel defense mechanisms specifically 

tailored to detect and mitigate GAN-generated 

adversarial examples, potentially by analyzing the 

"naturalness" or statistical properties of facial features in 

a more nuanced way. Secondly, exploring methods to 

increase the robustness of FRSs against such attacks 

during their training phase, possibly through adversarial 

training with GAN-generated samples. Thirdly, 

investigating the potential for these attacks in real-time 

video streams and across different 

lighting/environmental conditions to fully assess their 

real-world applicability. Finally, the ethical implications 

of such powerful generative adversarial techniques for 

privacy and security must be continually addressed, 

guiding responsible AI research and deployment. 
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