
INTERNATIONAL JOURNAL OF ADVANCED ARTIFICIAL INTELLIGENCE RESEARCH 
 

pg. 1  

ALIGNING EXPLAINABLE AI WITH USER NEEDS: A PROPOSAL FOR A PREFERENCE-AWARE 
EXPLANATION FUNCTION 

 
 

Dr. Lucas M. Hoffmann 
Human-Centered AI Research Lab, University of Tübingen, Tübingen, Germany 

 
Dr. Aya El-Masry 

Faculty of Information Systems, American University in Cairo, Cairo, Egypt 

 

   Published Date: 09 December 2024 // Page no.:- 1-7 

ABSTRACT 
 

The rapid advancement and widespread deployment of Artificial Intelligence (AI) models, particularly deep neural 
networks, have led to remarkable successes across diverse domains. However, the inherent "black-box" nature of many 
high-performing models poses significant challenges, including a lack of transparency, trust, and accountability. 
Explainable Artificial Intelligence (XAI) aims to bridge this gap by making AI decisions understandable to humans. While 
numerous XAI methods have emerged, a crucial aspect often overlooked is the diverse and context-dependent nature of 
user preferences for explanations. A generic explanation may not suffice for all users or all decision-making scenarios. 
This article proposes a conceptual framework centered around a mapping function designed to adapt explanation 
generation to specific user profiles, contextual factors, and AI model characteristics. We review the landscape of XAI, 
analyze the varying needs of stakeholders, and detail the proposed mapping function's inputs, logic, and outputs. This 
user-centric approach promises to enhance the utility, trustworthiness, and effectiveness of XAI systems, fostering 
broader adoption and responsible AI deployment. We conclude by outlining key challenges and future research directions 
necessary to realize this vision. 

Keywords: Explainable artificial intelligence (XAI); user-centered AI; preference-aware explanation; human-AI interaction; 
personalized explanations; interpretability; decision transparency; adaptive explanation systems; user trust in AI; AI 
explainability frameworks. 

 

INTRODUCTION 

Artificial Intelligence (AI) has permeated nearly every 

facet of modern life, from healthcare diagnostics to 

financial trading and autonomous systems. While the 

predictive power of complex machine learning models, 

especially deep learning networks, has reached 

unprecedented levels, their inherent opacity often 

renders them "black boxes" [3, 39, 47, 50, 91, 107]. This 

lack of transparency presents significant challenges, 

including difficulty in debugging model errors [1, 6, 56, 

70], ensuring fairness [20, 32, 61, 88, 106], building user 

trust [19, 29, 59], complying with regulatory 

requirements [52, 72], and facilitating human 

understanding and oversight [13, 55]. The absence of 

explainability can lead to reduced adoption, 

misapplication, and even ethical dilemmas [9, 10, 45, 62]. 

To address these critical concerns, the field of 

Explainable Artificial Intelligence (XAI) has emerged [36, 

37, 55]. XAI aims to develop methods and techniques that 

enable humans to comprehend, trust, and effectively 

manage AI systems [13]. This involves providing insights 

into why an AI model made a particular decision, how it 

arrived at a prediction, or what factors influenced its 

output. The motivations for XAI are diverse, ranging from 

debugging and auditing to promoting human learning 

and compliance [13, 55]. In domains such as healthcare, 

explainability is crucial for clinical validation and informed 

decision-making [9, 10, 14, 45, 64, 79, 85]. Similarly, in 

finance and credit scoring, understanding AI decisions is 

vital for accountability and regulatory adherence [33, 42, 

44, 98]. 

Despite the proliferation of XAI methods (e.g., saliency 

maps [4, 5, 15, 28, 116, 117], Layer-wise Relevance 

Propagation (LRP) [2, 15, 67, 115], LIME [111], SHAP [96], 

counterfactual explanations [25, 54, 105]), a critical gap 

persists: explanations are often designed as a "one-size-

fits-all" solution, neglecting the heterogeneity of human 

users and their varying needs [23, 48, 62, 82, 86, 100]. 

What a developer needs to debug a model differs 

significantly from what an end-user needs to make a 

critical decision, or what a regulator requires for 

compliance. The "problem of ambiguity in XAI" highlights 

that "explanation" itself is not a monolithic concept [48], 

and different stakeholders require different kinds of 

explanations [23, 45, 62, 82, 86]. 

This article addresses this fundamental challenge by 

proposing a mapping function as a conceptual framework 

for generating user-centric explanations in XAI. This 

function would dynamically select and tailor explanations 

based on a comprehensive understanding of the user's 

profile, the specific context of the AI decision, and the 
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characteristics of the AI model itself. By synthesizing 

current XAI methodologies with insights from human 

factors research, we aim to lay the groundwork for more 

effective, personalized, and ultimately, more impactful 

explainable AI systems. The remainder of this article is 

structured as follows: Section 2 reviews related work in 

XAI and human factors. Section 3 details the proposed 

mapping function framework. Section 4 discusses key 

challenges and future research directions, followed by 

concluding remarks in Section 5. 

2. Related Work 

The landscape of Explainable AI is rich and diverse, 

spanning various techniques and theoretical 

underpinnings. This section provides a concise overview 

of the prominent XAI methods and crucially, highlights 

the growing emphasis on human factors in evaluating 

their effectiveness. 

2.1 Defining and Categorizing Explainable AI 

The concept of "explainability" in AI is itself complex and 

subject to multiple interpretations [36, 48, 62, 92, 107, 

109]. Generally, XAI aims to make AI models more 

transparent, interpretable, and understandable [13]. 

Transparency refers to how the model works internally, 

interpretability to the degree to which a human can 

understand the cause and effect of a model's input and 

output, and understandability to the cognitive burden 

required for a human to grasp the explanation [92]. 

XAI methods can be broadly categorized based on several 

dimensions: 

• Scope (Local vs. Global): 

o Local explanations aim to explain a single 

prediction of a model. Prominent examples include LIME 

(Local Interpretable Model-agnostic Explanations) [111], 

which approximates the black-box model locally with an 

interpretable model, and SHAP (SHapley Additive 

exPlanations) [96], which attributes the contribution of 

each feature to a prediction based on game theory. 

o Global explanations seek to understand the 

overall behavior of the model. Techniques like Partial 

Dependence Plots (PDP) [11, 104] visualize the marginal 

effect of one or two features on the predicted outcome, 

while Accumulated Local Effects (ALE) plots [49, 108] 

offer a less biased alternative. 

• Model-Specificity (Model-agnostic vs. Model-

specific): 

o Model-agnostic methods (e.g., LIME, SHAP, PDP, 

ALE) can be applied to any black-box model [103, 94], 

offering flexibility. 

o Model-specific methods are designed for 

particular model architectures, such as neural networks. 

These include saliency maps [4, 5, 117], which highlight 

input regions most relevant to a prediction, and their 

advancements like Grad-CAM [116] and Grad-CAM++ [28]. 

Layer-wise Relevance Propagation (LRP) [15, 114], is 

another powerful technique for pixel-wise explanations in 

deep neural networks [2, 67, 69, 115]. Other model-

specific methods for deep networks include those for 

debugging internals [6] and understanding hidden layers 

[83, 87]. 

• Explanation Form (Feature Importance, 

Counterfactuals, Rules): 

o Feature Importance: Methods that quantify the 

contribution of individual features to a prediction (e.g., 

SHAP values, feature attribution maps). 

o Counterfactual Explanations: These answer "What 

if?" questions, explaining what minimum changes to the 

input would alter the model's prediction [24, 25, 35, 53, 54, 

57, 70, 73, 74, 75, 76, 77, 78, 80, 95, 97, 102, 105, 110]. 

They are increasingly popular due to their intuitive nature 

and potential for guiding recourse [76, 77]. 

o Rule-based Explanations: Simplifying complex 

models into sets of understandable rules. 

o Case-based Explanations: Providing examples from 

the training data that are similar to the query instance and 

their predictions [81]. 

2.2 Human Factors in Explainable AI Evaluation 

While technical metrics for explainability exist [37, 63, 

118], the ultimate goal of XAI is to serve human 

understanding. Therefore, human factors and user studies 

are critical for evaluating XAI effectiveness [5, 7, 19, 63, 81, 

99]. Research in this area reveals several key insights: 

• Varying User Needs and Stakeholders: Different 

users (e.g., end-users, developers, domain experts, 

regulators) have distinct information needs and cognitive 

capacities [23, 45, 46, 48, 62, 82, 86, 100]. For instance, 

medical professionals may require different explanations 

than AI engineers [9, 10, 45, 64]. 

• Trust and Comprehension: Explanations are 

intended to build trust [19] and facilitate comprehension 

[59]. However, studies show an "illusion of explanatory 

depth," where users think they understand an explanation 

more than they actually do [29]. Trust can also be 

influenced by factors beyond just correctness, such as 

perceived expertise [19]. 

• Task-Dependency: The type of explanation needed 

often depends on the task at hand. Debugging a malware 

classification model [56] requires different insights than 

making a clinical decision [10, 45]. 

• Usability and Interface Design: The presentation of 

explanations (visual, textual, interactive) significantly 

impacts their utility [84, 99]. Designing stakeholder-

tailored XAI interfaces is a growing area [82]. 

• Robustness of Explanations: The reliability and 

robustness of XAI methods themselves are under scrutiny 
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[8, 83, 114]. Adversarial examples can even "fool" 

saliency maps [83] or partial dependence plots [18]. 

Debugging techniques for XAI methods are also emerging 

[6]. 

In summary, while the technical toolkit for XAI is 

expanding, the field increasingly recognizes that the 

"explainable" part of XAI must be truly human-centered, 

acknowledging that there is no universal best 

explanation [48, 100]. This recognition forms the 

bedrock for our proposed mapping function. 

3. Proposed Mapping Function for User-Centric XAI 

The diverse landscape of XAI methods and the 

demonstrated heterogeneity of user needs necessitate a 

more adaptive and personalized approach to explanation 

generation. We propose a conceptual framework 

centered on a mapping function (M) that dynamically 

determines the optimal explanation strategy based on 

context. 

3.1 Problem Statement and Rationale 

Current XAI systems often provide a static explanation, 

or a limited set of pre-defined explanation types, 

regardless of who is receiving the explanation or why 

they need it. This "one-size-fits-all" approach leads to 

several inefficiencies: 

• Cognitive Overload: Providing overly complex or 

irrelevant explanations to non-expert users can hinder 

comprehension and trust [29]. 

• Insufficient Detail: Expert users or developers 

might require more granular details or specific types of 

explanations (e.g., for debugging [56]) that simple 

methods do not provide. 

• Mismatch with Task: An explanation suitable for 

auditing a model might be ineffective for helping a user 

decide on a loan application [98]. 

• Reduced Utility: If explanations are not tailored, 

their perceived value and actual impact on decision-

making, learning, or trust can be significantly diminished 

[7, 23]. 

The rationale for a mapping function is to bridge this gap 

by intelligently aligning the explanation strategy with the 

specific requirements of the situation, thus maximizing 

the utility and impact of XAI. 

3.2 Conceptual Framework: The Mapping Function 

(M) 

The proposed mapping function, $ \mathcal{M} $, takes 

a set of input parameters and outputs a tailored 

explanation strategy. Conceptually, it can be defined as: 

M(U,C,A,MAI)→EType,EFormat,EDetail,EGranularity  

Where: 

• $ U $: User Profile 

• $ C $: Contextual Factors 

• $ A $: AI Output Characteristics 

• $ M_{AI} $: AI Model Characteristics 

• $ E_{Type} $: Optimal Explanation Type 

• $ E_{Format} $: Optimal Explanation Format 

• $ E_{Detail} $: Optimal Level of Detail 

• $ E_{Granularity} $: Optimal Granularity 

(Local/Global) 

3.2.1 Inputs to the Mapping Function 

1. User Profile (U): This encompasses characteristics 

of the individual requesting the explanation. 

o Domain Expertise: Whether the user is an expert 

(e.g., clinician [45], data scientist), a novice, or a general 

end-user [19]. This influences the technicality and 

complexity of the explanation [45, 64]. 

o Role/Stakeholder Type: Developer, auditor, end-

user, regulator, legal counsel [45, 62, 82, 86, 100]. Each 

role has distinct informational needs and purposes for 

explanations [23]. 

o Cognitive Style/Learning Preference: Some users 

prefer visual explanations (e.g., saliency maps for image 

data [5, 14]), while others prefer textual rules or 

counterfactuals [25]. 

o Prior Knowledge: The user's existing 

understanding of the AI system or the domain. 

2. Contextual Factors (C): These define the specific 

situation in which the explanation is requested. 

o Task Type: What the user intends to do with the 

explanation (e.g., debugging [1, 6, 56, 70], decision-making 

[7, 10, 19], auditing, learning, building trust [19], 

identifying bias [20, 32]). 

o Decision Criticality/Stakes: Whether the AI 

decision is high-stakes (e.g., medical diagnosis [10, 45]) or 

low-stakes. High-stakes decisions often require more 

robust, verifiable, and perhaps simpler, counterfactual 

explanations. 

o Time Constraints: Real-time operational decisions 

might require quick, concise explanations, while post-hoc 

analysis might allow for more in-depth explanations [65]. 

o Interaction History: Previous explanations 

provided to the user and their feedback [84]. 

3. AI Output Characteristics (A): Information directly 

related to the AI model's prediction for the specific 

instance. 

o Prediction/Decision: The actual output of the AI 

model (e.g., classification label, regression value). 

o Confidence Score: The model's confidence in its 
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prediction. Low confidence might trigger a more detailed 

explanation or a warning. 

o Error Type (if applicable): If the AI made a 

mistake, the explanation might focus on identifying the 

cause of that error [1]. 

4. AI Model Characteristics (MAI): Properties of the 

AI model itself. 

o Model Type: Neural network (e.g., CNN [69], LSTM 

[27], graph neural network [89]), tree ensemble [95], 

linear model [16], etc. This impacts which XAI methods 

are technically feasible and most effective. 

o Model Complexity: Simple models might be 

intrinsically interpretable, while complex "black-box" 

models require post-hoc XAI. 

o Data Type: Explanations for image data might 

favor visual methods like saliency maps [117], while 

tabular data might lend itself to feature importance or 

counterfactuals [35, 110]. 

o Transparency/Intrinsic Interpretability: Some 

models are designed to be inherently interpretable [113], 

while others require external XAI methods. 

3.2.2 Mapping Logic (Conceptual) 

The core of the mapping function would involve a set of 

rules, potentially learned, that connect the input 

parameters to the optimal explanation strategy. This 

logic could be implemented via: 

• Rule-Based System: A set of IF-THEN rules (e.g., 

"IF User_Expertise is 'Novice' AND Task_Type is 

'Decision-Making' THEN E_Type is 'Counterfactual' AND 

E_Format is 'Textual'"). 

• Machine Learning Model: A meta-learner that 

learns user preferences and explanation effectiveness 

based on past interactions and feedback. This could 

involve reinforcement learning where the system is 

rewarded for providing explanations that lead to better 

user outcomes (e.g., improved decision accuracy, 

increased trust). 

• Knowledge Graph Reasoning: Representing user 

profiles, contexts, and XAI methods as nodes and 

relationships in a knowledge graph [10, 19, 62], allowing 

for complex inference to select explanations. 

3.2.3 Outputs of the Mapping Function 

The mapping function's output guides the XAI system in 

generating the most suitable explanation: 

• Explanation Type (EType): Which specific XAI 

method to use (e.g., LIME, SHAP, counterfactual, PDP, rule 

extraction [40], causality-based [21, 60, 68, 78, 93, 97]). 

• Explanation Format (EFormat): How the 

explanation should be presented (e.g., visual saliency 

map [5, 14], textual natural language explanation [100], 

interactive dashboard [84], graph-based [89], code-based 

for debugging [56]). 

• Level of Detail (EDetail): The amount of 

information to provide (e.g., high-level summary for a 

manager vs. intricate details for a researcher). 

• Granularity (EGranularity): Whether a local 

explanation for a specific instance or a global overview of 

the model's behavior is required. 

3.3 Benefits of the Proposed Framework 

Implementing a preference-aware mapping function 

offers several significant benefits: 

• Increased User Satisfaction: By providing 

explanations that directly meet user needs, the system can 

enhance satisfaction and usability. 

• Improved Decision-Making: Tailored explanations 

can lead to better human understanding and, 

consequently, more informed and effective decisions [7, 

10]. 

• Enhanced Trust and Acceptance: When users 

receive explanations that resonate with their cognitive 

models and informational requirements, their trust in and 

acceptance of AI systems are likely to increase [19]. 

• Faster Debugging and Auditing: Developers and 

auditors can quickly obtain the specific insights they need 

to identify and rectify model errors or biases [1, 6, 20, 32, 

56, 61, 70]. 

• Greater Compliance: Regulators and legal teams 

can obtain explanations in a format and level of detail 

suitable for auditing and ensuring adherence to 

regulations like the GDPR's "right to explanation" [52, 72]. 

4. Challenges and Future Directions 

While the proposed mapping function framework offers a 

promising direction for user-centric XAI, its realization 

entails several significant challenges that define crucial 

areas for future research. 

4.1 Quantifying and Eliciting User Preferences 

One of the foremost challenges is to systematically 

quantify and elicit user preferences for explanations. User 

preferences are often implicit, dynamic, and context-

dependent, making them difficult to capture. 

• User Study Methodologies: Developing robust and 

scalable user study methodologies to collect ground truth 

data on preferred explanation types and formats across 

diverse user groups and tasks [5, 23, 81, 99]. This includes 

innovative experimental designs to avoid the "illusion of 

explanatory depth" [29]. 

• Implicit Feedback Mechanisms: Designing systems 

that can infer user preferences from implicit feedback (e.g., 

interaction patterns, time spent on explanations, 

subsequent actions) rather than relying solely on explicit 



INTERNATIONAL JOURNAL OF ADVANCED ARTIFICIAL INTELLIGENCE RESEARCH 
 

pg. 5  

ratings. 

• Personalized Preference Models: Building 

computational models that can learn and predict 

individual or group-level preferences for explanations, 

akin to recommender systems [Yildiz et al., 2023, 23; 

Zarindast & Wood, 2021, 24]. 

4.2 Robust Evaluation Metrics for XAI 

Beyond qualitative user studies, developing quantitative 

and objective metrics for evaluating the effectiveness of 

user-tailored explanations is crucial [37, 63, 118]. 

Traditional metrics like fidelity or stability [8] may not 

fully capture human-centered aspects. 

• Task-Specific Performance: Measuring whether 

the tailored explanations actually improve human 

performance on downstream tasks (e.g., faster 

debugging, more accurate decisions, better learning 

outcomes) [7]. 

• Cognitive Load: Quantifying the cognitive effort 

required for users to understand different types of 

explanations. 

• Trust Calibration: Developing metrics to assess 

whether explanations correctly calibrate user trust, 

avoiding both over-trust and under-trust [19]. 

• Objective Metrics of Explainability: Continued 

research into metrics like "degree of explainability" [118] 

that can objectively assess the inherent quality of an 

explanation. 

4.3 Dynamic Adaptation and Learning 

For the mapping function to be truly effective, it must be 

capable of dynamic adaptation and continuous learning. 

• Real-time Adaptation: Developing mechanisms 

for real-time adjustments to explanation strategies based 

on immediate user context and feedback. This might 

involve techniques from adaptive systems [Dewan et al., 

2023, 6]. 

• Longitudinal Learning: Enabling the mapping 

function to learn and refine its strategies over extended 

periods of interaction with users, adapting to evolving 

preferences or changes in domain expertise. 

• Transfer Learning: Exploring whether learned 

user preferences for explanations in one domain can be 

transferred or adapted to another, reducing cold-start 

problems for new applications. 

4.4 Causal Explanations and Counterfactuals 

There is a growing consensus that humans prefer causal 

explanations and counterfactuals because they align with 

how humans reason about the world [24, 25, 100]. 

• Generating Causal Explanations: Research is 

needed to develop more robust and scalable methods for 

extracting and presenting causal relationships from 

complex AI models [21, 26, 60, 68, 78, 93, 97]. This 

includes addressing challenges with imperfect causal 

knowledge [78]. 

• Effective Counterfactuals: Improving the 

generation of diverse [105], actionable, and plausible [80, 

97] counterfactual explanations for various data types [35, 

57, 110]. This also includes ensuring the efficiency and 

scalability of generating such explanations [102, 73, 74]. 

4.5 Addressing Bias and Fairness 

XAI is a crucial tool for identifying and mitigating 

algorithmic bias [20, 32, 61]. 

• Explaining Bias: Developing XAI methods 

specifically designed to highlight discriminatory decision-

making factors or reveal unintended biases in models. 

• Fairness by Explicability: Exploring how 

explainability itself can contribute to fairness [61]. 

Debugging model mistakes related to bias [1]. 

4.6 Interdisciplinary Research 

The success of user-centric XAI heavily relies on 

interdisciplinary collaboration. 

• Cognitive Science and HCI: Deeper integration of 

insights from cognitive psychology and human-computer 

interaction (HCI) research to understand human 

information processing, trust formation, and decision-

making in the context of AI [9, 29, 62, 86, 99]. 

• Domain Expertise: Incorporating domain-specific 

knowledge and requirements directly into the XAI design 

process, as exemplified in healthcare [45, 64]. 

• Philosophy of Explanation: Drawing from 

philosophical theories of explanation to guide the design 

of truly meaningful AI explanations [100, 107, 109]. 

4.7 Ethical and Societal Implications 

Finally, the deployment of powerful XAI systems also 

introduces new ethical considerations. 

• Misleading Explanations: The risk that poorly 

designed or intentionally deceptive explanations could 

mislead users or auditors [29]. 

• Over-reliance: Users might over-rely on 

explanations, even if the underlying model is flawed. 

• Accountability: Clarifying who is accountable when 

AI decisions, even with explanations, lead to negative 

outcomes. 

5. CONCLUSION 

The advent of powerful, yet opaque, Artificial Intelligence 

models has underscored the critical need for Explainable 

AI (XAI) to foster trust, enable debugging, and ensure 

accountability. However, the efficacy of XAI is 

fundamentally constrained by a failure to account for the 

diverse and context-dependent needs of its human users. 
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This article has presented a conceptual framework for a 

preference-aware mapping function that represents a 

significant step towards user-centric XAI. By intelligently 

tailoring the type, format, detail, and granularity of 

explanations based on user profiles, contextual factors, 

AI outputs, and model characteristics, this framework 

aims to optimize human comprehension, enhance 

decision-making, and build stronger trust in AI systems. 

Our systematic review of the literature illuminated both 

the technical advancements in XAI methods and the 

growing recognition of the human element in explanation 

effectiveness. The proposed mapping function 

synthesizes these insights, advocating for a dynamic and 

adaptive approach that moves beyond generic 

explanations. While significant challenges remain, 

particularly in systematically quantifying user 

preferences, developing robust human-centered 

evaluation metrics, and ensuring real-time adaptation, 

the future of XAI lies in its ability to truly connect with 

and empower its human audience. By prioritizing 

interdisciplinary research and addressing the intricate 

interplay between AI capabilities and human cognitive 

needs, we can unlock the full potential of XAI, paving the 

way for more responsible, transparent, and impactful AI 

deployments across all sectors. 
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