eISSN: 3023-3267

Volume. 03, Issue. 05, pp. 01-07, September 2025"

Perinatal and Gestational Determinants of Long-Term Neurodevelopmental Trajectories in Children with Microcephaly: A Retrospective Cohort Study in a Rural Tertiary Care Setting

Dr. Elias J. Moreno

Institute of Public Health, University of Geneva, Geneva, Switzerland

Article received: 04/07/2025, Article Revised: 06/08/2025, Article Accepted: 01/09/2025

DOI: https://doi.org/10.55640/corr-v03i05-01

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Background: Microcephaly, an abnormally small head circumference, is a significant marker of impaired brain growth and is associated with substantial long-term neurodevelopmental morbidity. Perinatal factors, especially preterm birth, are known to influence developmental outcomes, but their specific impact on children with microcephaly in resource-limited rural settings is not well-understood. This study aimed to examine the association between gestational age and long-term developmental trajectories in a cohort of children with microcephaly from a rural tertiary care hospital.

Methods: We conducted a retrospective cohort study of all children diagnosed with microcephaly at birth or in the first year of life and followed up to age five years. Data on perinatal factors, developmental milestones, neurological impairments (epilepsy, cerebral palsy), growth patterns, and mortality were extracted from medical records. Microcephaly was defined using INTERGROWTH-21st and WHO growth standards. Univariate and multivariate analyses were performed to assess the association between gestational age and key outcomes.

Results: The cohort included a total of 155 children with microcephaly. Preterm birth was a significant perinatal risk factor, with preterm microcephalic children showing a higher prevalence and greater severity of developmental delay compared to term/post-term children. Preterm status was an independent predictor of severe developmental delay (Adjusted Odds Ratio [AOR]: 3.84; 95% CI: 2.15-6.12) and epilepsy (AOR: 2.56; 95% CI: 1.34-4.89), even after adjusting for confounders. This group also demonstrated slower head growth velocity and a higher prevalence of persistent growth restriction. A substantial proportion of cases (42%) had unknown etiology, reflecting the diagnostic limitations of the rural setting.

Conclusion: Preterm birth is a critical determinant of adverse long-term neurodevelopmental outcomes in children with microcephaly. These findings underscore the need for accurate gestational age assessment, intensive and prolonged follow-up, and targeted early intervention services for this high-risk population in rural healthcare settings. Public health efforts should focus on strengthening prenatal care and diagnostic capabilities to improve outcomes.

Keywords: Microcephaly, Preterm Birth, Neurodevelopmental Outcomes, Perinatal Factors, Rural Health, Gestational Age, Childhood Development.

INTRODUCTION

Background and Significance of Microcephaly

Microcephaly, defined as an abnormally small head circumference for age and sex, is a critical clinical finding and a significant public health concern worldwide [1, 4]. It serves as a vital proxy measure for underlying impaired

brain growth, and its presence often portends a high risk of long-term neurodevelopmental morbidity [2, 3]. The clinical spectrum associated with microcephaly is vast and includes developmental delay, intellectual disability, cerebral palsy, and epilepsy [5]. While often congenital, with head growth lagging during fetal development, microcephaly can also be postnatal, where the head

circumference fails to grow adequately after birth, reflecting ongoing cerebral insult or developmental failure [2]. The early identification of microcephaly is therefore paramount, as it can be the first, and sometimes only, sign of a severe underlying condition that requires immediate investigation and intervention [4].

The incidence and prevalence of microcephaly vary significantly across different populations, influenced by both genetic and environmental factors [10, 11, 13]. Global surveillance efforts, such as those conducted in Europe and North America, have provided valuable baseline data, yet significant gaps remain in our understanding of its epidemiology in resource-limited settings [10, 11, 12, 14]. These disparities are particularly pronounced in rural areas, where limited access to specialized prenatal care and diagnostic resources can hinder early detection and lead to poorer outcomes [24, 27]. The lack of comprehensive, population-based studies from these regions makes it difficult to establish a clear etiological and prognostic profile, which is crucial for developing effective public health strategies [14].

Etiological Complexity

The etiology of microcephaly is multifactorial and highly complex, encompassing a wide range of genetic, infectious, and environmental causes [5, 6, 15]. Genetic factors, including single-gene mutations chromosomal disorders, are a major cause of primary microcephaly, where the brain's growth is inherently impaired from the earliest stages of development [3, 6]. Prenatal infections are another significant contributor, with pathogens such as the Zika virus, rubella, cytomegalovirus (CMV), and toxoplasmosis capable of crossing the placental barrier and damaging the developing fetal brain [15, 20, 21]. The global Zika virus epidemic, for instance, dramatically highlighted the link between maternal infection and severe congenital microcephaly, underscoring the importance of infectious disease surveillance and prevention [20, 21, 22].

Beyond genetic and infectious causes, environmental exposures and maternal health status play a crucial role. Exposure to toxins, maternal malnutrition, and other adverse prenatal conditions can all contribute to impaired fetal brain development [18, 19, 30]. In rural healthcare contexts, factors such as suboptimal maternal nutrition and limited access to comprehensive prenatal care may increase the prevalence of these risk factors and complicate the diagnostic process [24, 27]. A substantial proportion of microcephaly cases, especially in areas with limited diagnostic capabilities, are ultimately classified as having an unknown etiology, making it challenging to provide accurate prognostic counseling or targeted therapies [5, 14].

The Role of Perinatal Factors

Perinatal factors, defined as events occurring around the

time of birth, are increasingly recognized as having a profound influence on the long-term outcomes of children with microcephaly [16, 17, 18]. Adverse perinatal events, such as perinatal hypoxia, low birth weight, and maternal health complications, are known to be independently associated with a higher risk of neurodevelopmental impairments [16, 17]. These factors can either cause microcephaly or exacerbate the effects of a pre-existing condition by adding a secondary layer of neurological insult to an already vulnerable brain [17]. For example, studies have shown a strong association between low birth weight and smaller head circumference at birth, a finding that is particularly relevant in populations with high rates of maternal malnutrition [17, 23].

Preterm Birth as a Critical Determinant

Among the various perinatal factors, preterm birth (birth before 37 weeks of gestation) stands out as a critical determinant of long-term outcomes [26]. The developing brain of a preterm infant is exceptionally fragile and susceptible to injury from hypoxia, inflammation, and other stressors common in the neonatal intensive care unit [32]. When preterm birth is associated with microcephaly, the risks are likely compounded. While the literature extensively documents the developmental challenges faced by preterm infants and those with microcephaly separately, there is a significant gap in our understanding of the synergistic effects of these two conditions [17, 32].

The standard growth charts for full-term infants may not be appropriate for assessing the growth trajectories of preterm infants, which further complicates the diagnosis and management of microcephaly in this population [7, 9, 23]. Therefore, understanding how gestational age at birth modulates the developmental and neurological outcomes of microcephalic children is essential for providing accurate prognoses and tailoring clinical management strategies [33]. This is particularly true in rural tertiary care hospitals, which often serve as referral centers for a wide range of complex cases, including those of preterm infants with microcephaly [24].

Gap in Existing Literature and Study Objective

Despite the known associations between microcephaly, preterm birth, and adverse outcomes, a detailed examination of their combined impact, especially over the long term, in a rural setting is lacking. Most existing studies are conducted in well-resourced, urban academic centers, where access to advanced diagnostics and early intervention services may mitigate some of the worst outcomes [11, 13, 29]. Our study addresses this critical gap by focusing on a cohort of children from a rural tertiary care hospital, a setting that more accurately reflects the challenges faced by a significant portion of the global population.

The primary objective of this study was to retrospectively examine the association between gestational age at birth (term vs. preterm) and the long-term developmental trajectories of children with microcephaly. We aimed to assess a range of outcomes, including developmental milestones, neurological impairments, growth patterns, and mortality, up to the age of five years. By doing so, we sought to provide crucial insights into the prognostic value of gestational age in children with microcephaly and to inform the development of more effective public health and clinical management strategies in resource-limited environments.

METHODS

Study Design and Setting

This study was a single-center, retrospective cohort analysis conducted at the pediatric and neurology clinics of a rural tertiary care hospital. The hospital serves as a primary referral center for a large, geographically diverse population, providing care to patients from a wide range of socioeconomic backgrounds. The retrospective design allowed us to leverage a rich dataset of medical records spanning several years, capturing the long-term follow-up of children from birth through their early childhood years. The study was conducted in compliance with the Declaration of Helsinki, and approval was obtained from the institutional review board of the hospital.

Study Population and Inclusion Criteria

The study cohort included all children diagnosed with microcephaly who were born at our institution or referred to our clinics for follow-up between January 2005 and December 2018. We included children who had at least one recorded visit to the pediatric or neurology clinic up to five years of age. Diagnosis of microcephaly was confirmed based on medical records documenting a head circumference measurement less than two standard deviations below the mean for age and sex, using established growth standards [7, 9]. Cases with known chromosomal abnormalities or major congenital malformations incompatible with long-term survival were excluded from the analysis to focus on the developmental trajectories of children with primary or acquired microcephaly.

Data Collection

Patient data were systematically collected through a comprehensive review of electronic medical records and physical patient charts. A standardized data extraction form was used to ensure consistency. The variables collected included:

• Maternal and Perinatal History: Maternal age, parity, prenatal care adequacy, reported maternal infections, exposure to toxins, and complications during pregnancy.

- Birth Characteristics: Gestational age at birth (as determined by the last menstrual period and/or first-trimester ultrasound), sex, birth weight, birth length, and Apgar scores at 1 and 5 minutes.
- Clinical Follow-up: Serial head circumference measurements, developmental assessment findings, specific neurological diagnoses (e.g., epilepsy, cerebral palsy), and mortality records up to the final follow-up visit or age five years.

Definitions

- Microcephaly: Defined as a head circumference (HC) measurement that fell below -2 standard deviations (SD) from the mean for gestational age and sex at birth, or for chronologic age and sex during follow-up [7, 9]. We utilized the INTERGROWTH-21st project standards for newborn measurements and the WHO growth charts for children under five years to ensure accuracy and consistency [7, 9, 23].
- Preterm Birth: Classified as birth occurring before 37 completed weeks of gestation. This was further categorized into very preterm (<32 weeks) and extremely preterm (<28 weeks) to explore the dose-response relationship between prematurity and outcomes [17]. Term birth was defined as birth between 37 and 41 weeks.
- Developmental Delay: Assessed based on the clinical documentation of developmental milestones, as evaluated by pediatricians using tools such as the Denver Developmental Screening Test or other standardized clinical assessments. Severity was categorized as mild, moderate, or severe based on the extent of delay across different domains (gross motor, fine motor, language, personal-social).
- Neurological Impairments: Epilepsy was defined as recurrent, unprovoked seizures diagnosed by a pediatric neurologist. Spastic cerebral palsy was diagnosed based on the presence of clinical signs of spasticity and motor dysfunction, as per standard diagnostic criteria [2, 5].
- Growth Patterns: Persistent growth restriction was defined as a head circumference that remained below -2 SD for age and sex, or a fall in percentile rank by more than 2 percentiles during follow-up.

Statistical Analysis

Descriptive statistics were used to characterize the study cohort. Continuous variables were summarized using means and standard deviations, while categorical variables were presented as frequencies and percentages. The cohort was stratified into two main groups for analysis: preterm infants with microcephaly and term/post-term infants with microcephaly.

The primary outcome variables were the presence and severity of developmental delay, epilepsy, and spastic cerebral palsy. We used univariate and multivariate logistic regression models to assess the association between preterm birth and these outcomes. Potential confounding variables, including birth weight, sex, and identified etiology, were included in the multivariate models to determine the independent predictive value of gestational age [28]. The adjusted odds ratios (AORs) with 95% confidence intervals (CIs) were calculated. Survival analysis was performed to assess mortality trends in the cohort, with a specific focus on the extremely preterm subgroup, though the limited sample size was a noted limitation [28]. All statistical analyses were conducted using SAS software, version 9.4 [28]. A p-value of <0.05 was considered statistically significant.

RESULTS

Baseline Characteristics and Etiological Profile

A total of 155 children with microcephaly were included in the final analysis. Of these, 68 (44%) were born preterm, and 87 (56%) were born at term or post-term. The baseline characteristics of the two groups are presented in Table 1. The preterm group had significantly lower mean birth weight (2.1 kg vs 3.2 kg), lower Apgar scores (5 vs 8 at 5 minutes), and a higher prevalence of other neonatal morbidities compared to the term/post-term group.

In terms of etiology, a significant proportion of cases remained undiagnosed. For the entire cohort, 42% of cases had no identified cause, reflecting the diagnostic challenges in our rural setting. The most common identified causes were intrauterine infections (28%), followed by genetic syndromes (18%) and other nonspecific causes.

Developmental Trajectories

Overall, the prevalence of developmental delay in the cohort was high, with 67% of children exhibiting some form of delay by age five. However, a stark difference was observed between the two groups. In the preterm group, 85% of children had documented developmental delay, compared to 53% in the term/post-term group.

Further analysis of severity revealed that preterm birth was a strong predictor of more severe developmental delay. A severe developmental delay was noted in 45% of the preterm group, whereas only 15% of the term/post-term group was similarly affected. In a multivariate logistic regression model adjusted for birth weight, sex, and etiology, preterm birth was found to be an independent predictor of severe developmental delay (AOR: 3.84; 95% CI: 2.15-6.12; p < 0.001) [31, 32].

Neurological Outcomes

The prevalence of neurological impairments was also significantly higher in the preterm microcephalic children. Epilepsy was diagnosed in 35% of the preterm group, compared to 14% in the term/post-term group. The odds of developing epilepsy were significantly higher in the preterm group (AOR: 2.56; 95% CI: 1.34-4.89; p < 0.01). Similarly, the prevalence of spastic cerebral palsy was markedly higher among preterm infants, affecting 22% of this group, versus 8% of the term/post-term group. Preterm birth was a powerful independent predictor for the development of cerebral palsy (AOR: 2.11; 95% CI: 1.25-3.57; p < 0.01).

Growth Patterns

Serial head circumference measurements over the first five years of life revealed distinct growth patterns. The preterm microcephalic children exhibited a slower head growth velocity compared to the term/post-term group. This led to a higher prevalence of persistent growth restriction, where the head circumference z-score continued to fall or remained stagnant well into childhood. The proportion of children who had a persistent head circumference below the -3 SD mark was substantially higher in the preterm group (55%) than in the term/post-term group (19%) [32, 34].

Mortality Trends

During the study period, there were 12 deaths in the entire cohort. The majority of these deaths (9 out of 12) occurred in the preterm group, particularly among the extremely preterm infants. While the mortality rate was higher in the extremely preterm subgroup, the difference was not statistically significant due to the small sample size. This finding, however, highlights a critical area for future investigation.

DISCUSSION

Summary of Key Findings

This study, conducted in a rural tertiary care hospital, provides a detailed account of the long-term developmental trajectories of children with microcephaly, with a particular focus on the profound influence of gestational age at birth. Our findings demonstrate that preterm birth is a critical and independent determinant of adverse neurodevelopmental outcomes in this vulnerable population. Preterm microcephalic children were not only more likely to experience developmental delay but also more likely to have more severe delays, a higher prevalence of epilepsy and cerebral palsy, and slower head growth trajectories compared to their term-born counterparts.

Comparison with Existing Literature

Our results align with and expand upon existing literature that highlights the individual risks associated with both

microcephaly and prematurity. Previous studies have shown that microcephaly, regardless of its cause, is a strong predictor of poor neurodevelopmental outcomes [31]. Similarly, preterm birth is a well-established risk factor for a range of neurological morbidities [32]. Our study, by examining the intersection of these two conditions, suggests that they exert a synergistic or additive effect, where the combination of the two leads to a significantly worse prognosis than either condition alone. This finding is particularly important for clinical prognostication and resource allocation [32].

The high prevalence of unknown etiology in our cohort (42%) is a crucial finding that reflects the diagnostic limitations inherent to a rural, resource-limited setting. While global surveillance and research have made great strides in identifying genetic and infectious causes [6, 15], these advances are often not readily accessible in our study setting. This highlights a significant gap in healthcare equity and underscores the need for improved diagnostic infrastructure and capabilities in rural areas [14, 24].

Implications of Preterm Birth

The vulnerability of the preterm brain is welldocumented [17]. In the context of microcephaly, this vulnerability is amplified. The insult that causes microcephaly-whether it is a genetic defect, an infection, or a vascular event—is compounded by the additional stresses of premature birth. The developing brain of a preterm infant is prone to a range of insults, including intraventricular hemorrhage, periventricular leukomalacia, and hypoxic-ischemic injury, all of which can further impair neuronal development and exacerbate the existing brain growth restriction [32]. Our study provides compelling evidence that the association of these insults results in a more severe and sustained developmental impairment, particularly in the domains of motor function and cognitive development. The observed higher rates of epilepsy and spastic cerebral palsy in this group underscore the severity of the underlying cerebral pathology [32].

The slower head growth velocity and persistent growth restriction in the preterm group also have important implications. While the head circumference of term-born microcephalic children may show some catch-up growth, this was far less common in the preterm group, suggesting a more fundamental and persistent impairment of brain growth and development [32, 34]. This finding reinforces the notion that the degree of prematurity is a critical prognostic factor that should guide both clinical counseling and the intensity of follow-up care.

Prognostic Value of Serial Head Circumference Measurements and Growth Velocities

The findings of this study, particularly the observation of

slower head growth velocity and persistent growth restriction in the preterm microcephalic cohort, have profound implications for clinical practice and prognostication. While a single head circumference (HC) measurement at birth is the initial diagnostic criterion for congenital microcephaly, our data demonstrate that the subsequent trajectory of head growth over the first five years of life is a far more powerful and dynamic indicator of long-term neurodevelopmental potential. A static measurement provides a snapshot, but the velocity of growth provides a moving picture of the brain's ongoing development or lack thereof. This is a crucial distinction, especially in resource-limited settings where advanced neuroimaging or genetic testing may not be available.

The practice of using standardized growth charts is fundamental to pediatrics, yet its application in the context of microcephaly requires a nuanced approach. The INTERGROWTH-21st project has provided international standards for newborn weight, length, and head circumference by gestational age, which are essential for accurate diagnosis at birth [7]. These standards, based on a cohort of healthy, well-nourished newborns, offer a universal benchmark for what constitutes normal fetal and neonatal growth [7, 8, 23]. Subsequent monitoring during infancy and early childhood relies on the WHO child growth standards [9]. Our study rigorously applied both sets of standards to define microcephaly and track growth, and the data compellingly show that the preterm microcephalic children consistently fell further behind on these charts.

This falling-off from the growth curve is not merely a statistical anomaly; it is a clinical sign of ongoing or uncompensated cerebral pathology. In term-born children with microcephaly, some degree of "catch-up" head growth can occasionally be observed, suggesting a more isolated or self-limiting insult to brain development [34]. In contrast, the sustained and slower growth velocity seen in our preterm cohort suggests a more severe and pervasive underlying issue. The combination of an initial insult leading to microcephaly and the additional vulnerability and potential for injury inherent in premature birth likely creates a cycle of impaired neurodevelopment from which the brain struggles to recover [32]. This persistent growth restriction is a powerful and visible marker of this ongoing struggle.

Furthermore, the prognostic value of serial head circumference measurements extends beyond simply confirming the diagnosis. A child with microcephaly whose HC is trending along a stable, albeit low, percentile line may have a better prognosis than a child whose HC percentile is continuously dropping. The latter scenario, as was more common in our preterm group, should serve as a red flag for clinicians, signaling a need for more intensive diagnostic work-up and a more guarded long-term prognosis. Our findings suggest a strong correlation between this persistent growth restriction and the subsequent development of severe

developmental delay, epilepsy, and cerebral palsy. This simple, low-cost, and non-invasive measurement can thus become a core component of a prognostic algorithm in rural hospital settings.

The clinical implications of this are significant. In a rural tertiary care hospital, a pediatrician often serves as the first and primary point of contact for a child with microcephaly. Armed with a tape measure, a growth chart, and an understanding of our study's findings, clinician can move beyond a simple diagnosis of microcephaly. They can actively monitor the child's neurodevelopmental progress by tracking head growth velocity. A stagnant or falling growth trajectory, especially in a preterm infant, should trigger an immediate and aggressive referral to early intervention services, even in the absence of a formal developmental assessment. This proactive approach, guided by simple growth measurements, could lead to earlier enrollment in rehabilitation programs, which our literature review suggests can modestly improve outcomes [33].

Our study also highlights the importance of providing a comprehensive, integrated approach to care. The link between maternal factors, such as nutrition, and fetal growth is well-established [30, 27]. Therefore, a finding of poor head growth in an infant should not only prompt a neurological evaluation but also a deeper look at the nutritional status of both the child and the mother, as well as the adequacy of prenatal care [24]. This holistic perspective is particularly relevant in rural settings where maternal malnutrition and limited access to care are prevalent. By using head circumference as an initial screening tool, healthcare systems can create a pathway for addressing these upstream factors, thereby preventing future cases and improving outcomes for those already affected.

The high prevalence of unknown etiology in our study further underscores the importance of this simple, yet powerful, prognostic tool. In the absence of a specific genetic or infectious diagnosis, which can often guide a prognosis, clinicians are left with limited information. In this scenario, the head growth trajectory becomes one of the most reliable pieces of data available. It moves the clinical focus from finding a definitive cause, which may be impossible in some settings, to managing the consequences and providing the best possible care based on what is observable and measurable. This shifts the paradigm of care from a purely etiological approach to a functional and prognostic one, which is highly practical for rural healthcare delivery.

The use of serial measurements as a prognostic tool is not a new concept, but its specific application and validation in a microcephalic cohort from a rural, resource-limited setting is a novel contribution. Previous work, such as that by Dolk (1991) and Leviton et al. (2010), has explored the predictive value of microcephaly in the first year of life for later developmental outcomes, but our

study extends this by explicitly highlighting the additional risk conferred by prematurity and the dynamic nature of head growth [31, 32]. The fact that preterm birth was an independent predictor of adverse outcomes, even after adjusting for birth weight, further underscores that it is the combination of prematurity-related cerebral vulnerability and microcephaly that creates this particularly poor growth trajectory and prognosis.

In summary, the head circumference is more than a diagnostic measurement; it is a vital, dynamic prognostic marker. In the rural hospital setting, where resources are scarce and diagnostic tools are limited, the simple act of consistently measuring and charting a microcephalic child's head circumference can provide invaluable information. A declining or stagnant growth velocity, particularly in a preterm infant, should serve as a powerful clinical signal for intensified follow-up, aggressive referral to early intervention services, and a more guarded prognosis. Leveraging this simple tool could be a cornerstone of a more effective and equitable healthcare strategy for children with microcephaly in resource-limited environments.

Clinical and Public Health Implications

Our findings have several important clinical and public health implications, particularly for rural healthcare systems. First, the study emphasizes the critical role of accurate gestational age assessment as a prognostic tool. For a newborn diagnosed with microcephaly, knowing their gestational age at birth can help clinicians anticipate the severity of long-term outcomes and inform counseling for parents [19, 33].

Second, our results highlight the urgent need for early detection and intervention services, especially for preterm microcephalic children. Given their high risk for severe developmental delays and neurological impairments, this group requires more intensive and prolonged follow-up from a multidisciplinary team, including pediatric neurologists, physical therapists, and occupational therapists. While resource constraints may be a challenge, the implementation of community-based early intervention programs and home-based therapy models could be a feasible solution in rural settings [33].

Finally, our findings underscore the need for broader public health initiatives aimed at strengthening prenatal care, infectious disease screening, and maternal nutritional support in rural communities [24, 27, 30]. Preventing preterm birth and addressing modifiable risk factors like maternal malnutrition could have a significant impact on reducing the burden of microcephaly-related disabilities.

Limitations of the Study

This study has several limitations that should be considered. The retrospective design relied on the

accuracy and completeness of medical records, which may have led to some data incompleteness or recall bias. As a single-center study, the findings may not be generalizable to all rural or urban populations. The high proportion of unknown etiologies, while a reflection of the setting, limited our ability to fully explore the interplay between specific causes and outcomes. Furthermore, the sample size, while adequate for some analyses, was too small to detect statistically significant differences in rare outcomes like mortality, especially in sub-groups like extremely preterm infants. Our reliance on clinical developmental assessments rather than standardized psychometric tests is another limitation that could affect the precision of our findings.

Future Research

Future research should focus on a number of key areas. A prospective, multicenter study with a larger sample size would allow for more robust statistical analyses and a better understanding of the generalizability of our findings. Implementing standardized, comprehensive developmental and genetic assessments would provide more precise data on outcomes and etiology. Finally, research evaluating the effectiveness of specific early intervention programs tailored for children with microcephaly in resource-limited settings is urgently needed to identify scalable and cost-effective strategies for improving long-term outcomes.

REFERENCES

- 1. Leviton A, Holmes LB, Allred EN, et al. Methodologic issues in epidemiologic studies of congenital microcephaly. Early Hum Dev 2002;69:91–105.
- **2.** Woods CG, Parker A. Investigating microcephaly. Arch Dis Child 2013;98:707–13.
- **3.** Dobyns WB. Primary microcephaly: new approaches for an old disorder. Am J Med Genet 2002;112:315–7.
- **4.** Nawathe A, Doherty J, Pandya P. Fetal microcephaly. BMJ 2018;361.
- **5.** von der Hagen M, Pivarcsi M, Liebe J, et al. Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol 2014;56:732–41.
- **6.** Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 2005;76:717–28.
- **7.** Villar J, Cheikh Ismail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex:

- the newborn cross-sectional study of the INTERGROWTH-21st project. Lancet 2014;384:857–68.
- **8.** Papageorghiou AT, Ohuma EO, Altman DG, et al. International standards for fetal growth based on serial ultrasound measurements: the fetal growth longitudinal study of the INTERGROWTH-21st project. Lancet 2014;384:869–79.
- **9.** WHO Multicentre Growth Reference Study Group. WHO child growth standards: growth velocity based on weight, length and head circumference: methods and development. Geneva: World Health Organization, 2009: 242. ISBN: 978 92 4 154763 5.
- **10.** Morris JK, Rankin J, Garne E, et al. Prevalence of microcephaly in Europe: population based study. BMJ 2016;354.
- 11. Cragan JD, Isenburg JL, Parker SE, et al. Population-based microcephaly surveillance in the United States, 2009 to 2013: an analysis of potential sources of variation. Birth Defects Res A Clin Mol Teratol 2016;106:972–82.
- **12.** Graham KA, Fox DJ, Talati A, et al. Prevalence and clinical attributes of congenital microcephaly New York, 2013-2015. MMWR Morb Mortal Wkly Rep 2017;66:125–9.
- **13.** Auger N, Quach C, Healy-Profitós J, et al. Congenital microcephaly in Quebec: baseline prevalence, risk factors and outcomes in a large cohort of neonates. Arch Dis Child Fetal Neonatal Ed 2018;103:F167–F172.
- **14.** Bhide P, Kar A. Birth prevalence of microcephaly in India. Bull World Health Organ 2016;23.
- **15.** Devakumar D, Bamford A, Ferreira MU, et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infect Dis 2018;18.