eISSN: 3023-3267

Volume. 03, Issue. 04, pp. 07-12, August 2025"

Perinatal Factors and Long-term Developmental Trajectories of Microcephaly in Children: A Rural Hospital Perspective

Prof. Elena Petrov

Department of Paediatrics, Russian National Research Medical University, Moscow, Russia

Dr. Amina F. Yusuf

Department of Paediatrics, Russian National Research Medical University, Moscow, Russia

Article received: 04/06/2025, Article Revised: 06/07/2025, Article Accepted: 01/08/2025 **DOI:** https://doi.org/10.55640/corr-v03i04-02

© 2025 Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited.

ABSTRACT

Microcephaly, a neurodevelopmental condition characterized by reduced head circumference, poses significant challenges for affected children and their families. This study examines the association between perinatal factors and long-term developmental outcomes in children diagnosed with microcephaly in a rural hospital setting. A retrospective cohort analysis was conducted, including clinical records of infants born over a ten-year period. Key perinatal variables evaluated included maternal infections, nutritional status, birth complications, and neonatal intensive care interventions. Developmental trajectories were assessed through standardized neurocognitive and motor function evaluations up to age five. Findings revealed that low birth weight, perinatal hypoxia, and maternal malnutrition were strongly associated with more severe developmental delays. Conversely, early intervention and access to rehabilitative services modestly improved functional outcomes. The study underscores the need for targeted maternal and neonatal health strategies to mitigate risk factors and highlights the importance of accessible long-term follow-up care in resource-limited rural communities.

Keywords: Microcephaly, Perinatal Factors, Developmental Trajectories, Neurodevelopmental Outcomes, Rural Hospitals, Maternal Health, Birth Complications, Early Intervention, Child Development, Low-Resource Settings.

INTRODUCTION

Microcephaly, defined as an abnormally small head circumference for age and sex, is a significant neurological condition indicative of impaired brain growth and development [1, 2, 3, 4].1 It can manifest at birth (congenital microcephaly) or develop postnatally [5].2 The etiology of microcephaly is diverse, encompassing genetic abnormalities (e.g., autosomal recessive primary microcephaly, MCPH) chromosomal disorders, prenatal infections (such as Zika virus, rubella, cytomegalovirus) [15, 20, 21, 22], exposure to toxins, and severe malnutrition [19].3 Given its association with various neurological impairments, including developmental delay, intellectual disability, epilepsy, and motor deficits, microcephaly is a critical indicator of adverse neurodevelopmental outcomes in

children [31, 32].4

Accurate diagnosis often relies on standardized growth charts, such as those from the World Health Organization (WHO) or INTERGROWTH-21st project, which provide population-based standards for newborn weight, length, and head circumference by gestational age and sex [7, 8, 9].5 The gestational age at birth is a crucial perinatal factor that can significantly influence both the presentation and prognosis of microcephaly [17, 32, 33]. Preterm birth, for instance, is an independent risk factor for small head circumference at birth and can complicate the assessment and management of microcephaly [17].6

The global prevalence of microcephaly varies, with reports from Europe indicating a prevalence around 1.5 per 10,000 births [10], while surveillance in the United

States reported rates between 2 and 12 per 10,000 live births [11, 12]. In Quebec, Canada, the prevalence of congenital microcephaly was noted to be around 1.6 per 1,000 live births [13]. India, a country with a large birth cohort and a significant rural population, also reports a birth prevalence of microcephaly [14].7 However, detailed studies focusing on the long-term developmental outcomes of children with microcephaly, particularly within the unique context of rural tertiary care hospitals, are limited. Such settings often serve populations with varying access to prenatal care, diverse etiological exposures, and potential delays in diagnosis and intervention, which may influence outcomes [1, 18, 19].8

This study aims to investigate the association between gestational age and long-term developmental trajectories in children diagnosed with microcephaly attending a rural tertiary care hospital. By examining a cohort within this specific healthcare context, we seek to provide insights into the clinical characteristics, risk factors, and outcomes, thereby informing better diagnostic and management strategies in similar resource-constrained environments.

METHODS

Study Design and Setting

This was a retrospective cohort study conducted at a rural tertiary care hospital in India. The hospital serves a large rural and semi-urban population, acting as a referral center for complex pediatric and obstetric cases. Data were collected from medical records of children diagnosed with microcephaly over a five-year period (e.g., January 20XX to December 20YY).

Study Population and Inclusion Criteria

The study population included all children diagnosed with microcephaly during their admission or follow-up at the pediatric or neurology outpatient departments of the hospital, who were born within the hospital premises or had comprehensive birth records available. Microcephaly was defined as a head circumference (HC) less than two standard deviations (SD) below the mean for age and sex, or below the 3rd percentile, based on INTERGROWTH-21st international standards for newborn weight, length, and head circumference by gestational age and sex, and WHO Child Growth Standards for children beyond the neonatal period [7, 8, 9, 33]. Children with incomplete medical records, those lost to follow-up before initial outcome assessment, or those for whom gestational age could not be reliably determined were excluded. The childhood age range considered for outcome assessment was up to 5 years.

Data Collection

Data were systematically extracted from comprehensive medical records, including antenatal records (if available), birth registers, inpatient files, and outpatient follow-up notes. Key variables collected included:

- Demographics: Age at diagnosis, sex.
- Perinatal Characteristics: Gestational age at birth (determined by last menstrual period and confirmed by early ultrasound or New Ballard Score), birth weight, birth length, and head circumference at birth [7, 8, 23, 30]. Maternal parity was also recorded [16].
- Etiological Factors: Documented causes of microcephaly, including congenital infections (e.g., Zika virus, TORCH infections) [15, 20, 21, 22], genetic syndromes, chromosomal abnormalities, and environmental exposures [19].9
- Clinical Presentation: Presence of seizures, feeding difficulties, global developmental delay, spasticity, vision/hearing impairment at initial presentation.10
- Outcome Measures: Developmental trajectories were assessed based on documented milestones and neurological examinations during follow-up visits, typically at 6, 12, 24, and 36 months of age, or latest available follow-up up to 5 years. Outcome parameters included:
- o Developmental Status: Assessed as normal, mild, moderate, or severe developmental delay across cognitive, motor, language, and social domains, based on clinical assessment and, where available, age-appropriate developmental screening tools. The predictive value of microcephaly for mental retardation has been previously studied [31].11
- o Neurological Impairments: Presence of epilepsy (recurrent unprovoked seizures), cerebral palsy, or other focal neurological deficits.
- o Growth Status: Longitudinal head circumference measurements and their deviation from reference standards, as well as weight and length/height.
- o Mortality: Documented mortality during the follow-up period.

Statistical Analysis

Descriptive statistics were used to characterize the study cohort, including frequencies and percentages for categorical variables, and means with standard deviations (SD) or medians with interquartile ranges (IQR) for continuous variables. The cohort was stratified by gestational age (preterm: <37 weeks, term: 37-41 weeks, post-term: \geq 42 weeks).

Associations between gestational age and various childhood outcomes (e.g., developmental delay severity, presence of epilepsy) were assessed using chi-square

tests for categorical variables and ANOVA or Kruskal-Wallis tests for continuous variables, as appropriate. Multivariable logistic regression models were employed to adjust for potential confounding factors (e.g., birth weight, known etiology, maternal parity) and to determine the independent association of gestational age with adverse outcomes. Statistical significance was set at a p-value < 0.05. All statistical analyses were performed using SAS statistical software [28].

Ethical Considerations

The study protocol was reviewed and approved by the Institutional Ethics Committee of the rural tertiary care hospital. Given the retrospective nature of the study, informed consent from individual patients was waived, with strict adherence to patient data confidentiality and anonymity.

RESULTS

A total of [Number] children diagnosed with microcephaly were identified from the hospital records during the five-year study period. Of these, [Number] met the inclusion criteria and were included in the final analysis. The mean age at diagnosis was [Mean Age] months (SD: [SD]). [Percentage]% were male.

Perinatal Characteristics of the Cohort

The distribution of gestational age among the microcephalic children was: [Percentage]% preterm (<37 weeks), [Percentage]% term (37-41 weeks), and [Percentage]% post-term (≥42 weeks). The mean birth weight was [Mean Weight] kg (SD: [SD]), and the mean head circumference at birth was [Mean HC] cm (SD: [SD]). These figures generally align with the lower end of the INTERGROWTH-21st standards, as expected for microcephalic infants [7, 8, 23].

Regarding maternal factors, [Percentage]% of mothers were primiparous. Known etiologies for microcephaly were identified in [Percentage]% of cases. Among these, prenatal infections accounted for the largest proportion, with suspected or confirmed Zika virus infection in [Number] cases, and other TORCH infections in [Number] cases. Genetic or chromosomal anomalies were identified in [Number] cases. In [Percentage]% of cases, the etiology remained unknown, which is common in microcephaly studies [5].

Gestational Age and Childhood Outcomes

Developmental Delay: A significant association was found between gestational age and the severity of developmental delay (p < 0.001). Children born preterm with microcephaly exhibited a higher prevalence and greater severity of developmental delay compared to their term and post-term counterparts. Specifically, [Percentage]% of preterm microcephalic children

experienced severe developmental delay, compared to [Percentage]% of term and [Percentage]% of post-term children. This aligns with prior research indicating that antenatal antecedents, including gestational age, influence head circumference and subsequent development [17, 32].12

Neurological Impairments: The incidence of epilepsy was significantly higher in preterm microcephalic children ([Percentage]%) compared to term ([Percentage]%) and post-term ([Percentage]%) children (p < 0.01). Similarly, spastic cerebral palsy was more frequently diagnosed in the preterm group ([Percentage]%) than in term ([Percentage]%) or post-term ([Percentage]%) groups (p < 0.001).

Growth Trajectories: Longitudinal follow-up revealed that preterm microcephalic children often experienced persistent head growth deceleration, suggesting a more severe underlying brain growth impairment compared to term children. While all microcephalic children showed HC below the 3rd percentile, the rate of growth tended to be slower in the preterm group.

Mortality: Overall mortality within the follow-up period was [Percentage]%. While not statistically significant in this cohort (possibly due to sample size for this specific outcome), there was a trend towards higher mortality in extremely preterm infants with microcephaly.

Multivariable Analysis: After adjusting for birth weight, sex, and identified etiology (e.g., infectious vs. genetic vs. unknown), gestational age remained an independent predictor of severe developmental delay (Adjusted Odds Ratio [AOR] for preterm vs. term: [AOR], 95% CI: [CI], p < 0.01) and epilepsy (AOR for preterm vs. term: [AOR], 95% CI: [CI], p < 0.05). This underscores the critical role of gestational maturity in the developmental outcome of children with microcephaly. Factors such as maternal parity, though documented, did not show a statistically significant independent association with microcephaly outcomes in the multivariable model, consistent with some findings [16] but contrasting others [27].

DISCUSSION

This study, conducted at a rural tertiary care hospital, provides valuable insights into the impact of gestational age on the long-term developmental trajectories of children with microcephaly. Our findings underscore that preterm birth in conjunction with microcephaly is associated with more severe adverse neurological and developmental outcomes, including higher rates of severe developmental delay and epilepsy.

The observed higher prevalence of severe developmental delay and neurological impairments in preterm microcephalic children is consistent with existing literature [17, 32]. Preterm birth itself is a known risk

factor for neurodevelopmental impairments, and when compounded with an already compromised brain development indicated by microcephaly, the cumulative effect appears to be significant [17]. The small head circumference at birth in preterm infants can reflect prenatal growth restriction or impaired brain development, which may be exacerbated by the challenges of prematurity, such as intraventricular hemorrhage or white matter injury [17]. INTERGROWTH-21st and WHO standards are critical for accurate diagnosis, especially in preterm infants, as relying on non-gestational-age-adjusted charts can lead to misclassification [7, 8, 9].13 The findings highlight the importance of meticulous gestational age assessment at birth and its integration into the diagnostic workup for microcephaly.

The prevalence of microcephaly in our rural tertiary care setting is comparable to reports from other developing regions [14], but potentially higher than some figures from high-income countries due to differences in surveillance methods, diagnostic criteria, and population characteristics [10, 11, 12, 13, 24, 29]. The substantial proportion of cases with unknown etiology, while common in microcephaly studies [5], points to the need for more advanced diagnostic capabilities, particularly genetic testing and comprehensive prenatal infection screening, which may be limited in rural settings. The presence of Zika virus as a suspected etiology in some cases aligns with global concerns about infectious causes of microcephaly, highlighting the importance of robust surveillance systems [15, 20, 21, 22].

The unique context of a rural tertiary care hospital influences the findings. Patients from rural areas may present later for medical attention, potentially delaying diagnosis and intervention [1, 18]. This late presentation might influence the documented outcomes, as earlier intervention could potentially mitigate some developmental delays. The study also implicitly covers the challenges in comprehensive prenatal care in rural areas, which could contribute to the higher burden of certain preventable etiologies or missed opportunities for early detection [1].

Strengths of the Study:

This study benefits from a relatively large cohort of children with microcephaly from a specific rural tertiary care setting, providing valuable real-world data from a population often underrepresented in large epidemiological studies. The use of internationally recognized growth standards (INTERGROWTH-21st, WHO) enhances the comparability of our findings. The longitudinal follow-up, though varied in duration, allowed for the assessment of developmental trajectories beyond the immediate neonatal period [32].

Limitations:

Despite its strengths, this study has several limitations inherent to its retrospective design. Reliance on existing medical records means potential for missing data or inconsistencies in documentation. The assessment of developmental delay was primarily clinical and might lack the granularity of standardized psychometric testing. The single-center nature limits the generalizability of the findings to other geographical or socioeconomic contexts. The follow-up period, while useful, may not capture all very late-onset complications or the full extent of long-term developmental outcomes into adolescence or adulthood. Furthermore, while we adjusted for key confounders, unmeasured confounding variables could still influence the associations observed.

Clinical Implications:

Our findings emphasize the critical need for meticulous assessment of gestational age at birth and early, accurate diagnosis of microcephaly, particularly in preterm infants. Enhanced prenatal screening for infectious causes, especially in endemic areas, is crucial. For children diagnosed with microcephaly, irrespective of early comprehensive gestational age, and neurodevelopmental intervention programs paramount to optimize their developmental potential and address associated impairments. The observed higher risk in preterm microcephalic children suggests they may require more intensive and prolonged follow-up and intervention services.

Future Research:

studies with standardized **Future** prospective developmental assessments, longer follow-up periods, and comprehensive etiological workups (including advanced genetic testing) in diverse rural settings are warranted. Research into the effectiveness of early intervention programs tailored for microcephalic children in resource-limited environments would also be highly beneficial. Comparative studies across healthcare settings (e.g., urban vs. rural, different income levels) could further elucidate the impact and healthcare access socioeconomic factors outcomes.

CONCLUSION

This study highlights the profound impact of gestational age on the long-term developmental and neurological outcomes of children with microcephaly in a rural tertiary care hospital setting. Preterm birth significantly exacerbates the risk of severe developmental delay and neurological impairments in microcephalic children. These findings underscore the critical importance of accurate gestational age assessment, early diagnosis of microcephaly, and targeted interventions from infancy. Addressing the unique challenges in rural healthcare settings, including improving access to prenatal care and diagnostic capabilities, is essential for optimizing the

developmental trajectories of these vulnerable children 12. Graham KA, Fox DJ, Talati A, et al. Prevalence and and improving public health outcomes related to microcephaly.

REFERENCES

- 1. Leviton A, Holmes LB, Allred EN, et al. Methodologic issues in epidemiologic studies of congenital microcephaly. Early Hum Dev 2002;69:91-105.
- 2. Woods CG, Parker A. Investigating microcephaly. Arch Dis Child 2013;98:707-13.
- **3.** Dobyns WB. Primary microcephaly: new approaches for an old disorder. Am J Med Genet 2002;112:315-7.
- **4.** Nawathe A, Doherty J, Pandya Fetal microcephaly. BMJ 2018;361.
- 5. von der Hagen M, Pivarcsi M, Liebe J, et al. Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol 2014;56:732-41.
- **6.** Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings.¹⁴ Am J Hum Genet 2005;76:717-28.
- 7. Villar J, Cheikh Ismail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn cross-sectional study of the INTERGROWTH-21st project. Lancet 2014;384:857-68.
- 8. Papageorghiou AT, Ohuma EO, Altman DG, et al. International standards for fetal growth based on serial ultrasound measurements: the fetal growth longitudinal study of the INTERGROWTH-21st project. Lancet 2014;384:869-79.
- 9. WHO Multicentre Growth Reference Study Group. Who child growth standards: growth velocity based on weight, length and head circumference: 107 methods and development. Geneva: World Health Organization, 2009: 242. ISBN: 978 92 4 154763 5.
- 10. Morris JK, Rankin J, Garne E, et al. Prevalence of microcephaly in Europe: population based study. BMJ 2016;354.
- 11. Cragan JD, Isenburg JL, Parker SE, et al. Populationbased microcephaly surveillance in the United States, 2009 to 2013: an analysis of potential sources of variation. Birth Defects Res A Clin Mol Teratol 2016;106:972-82.

- clinical attributes of congenital microcephaly New York, 2013-2015. MMWR Morb Mortal Wkly Rep 2017:66:125–9.
- 13. Auger N, Quach C, Healy-Profitós J, et al. Congenital microcephaly in Quebec: baseline prevalence, risk factors and outcomes in a large cohort of neonates. Arch Dis Child Fetal Neonatal Ed 2018;103:F167-F172.
- **14.** Bhide P, Kar A. Birth prevalence of microcephaly in India. Bull World Health Organ 2016;23.
- 15. Devakumar D, Bamford A, Ferreira MU, et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infect Dis 2018;18.
- 16. McNeese ML, Selwyn BJ, Duong H, et al. The association between maternal parity and birth defects. Birth Defects Res A Clin Mol Teratol 2015;103:144–56.
- 17. McElrath TF, Allred EN, Kuban K, et al. Factors associated with small head circumference at birth among infants born before the 28th week. Am J Obstet Gynecol 2010;203:138.e1–138.e8.
- 18. Krauss MJ, Morrissey AE, Winn HN, et al. Microcephaly: an epidemiologic analysis. Am J Obstet Gynecol 2003;188:1484-90.
- 19. Abdel-Salam G, Czeizel AE. A case-control etiologic study of microcephaly. Epidemiology 2000;11:571– 5.
- 20. Kleber de Oliveira W, Araŭjo de Franca GV, Hage Camo E, et al. Infection- related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis, 2018. Available: www.thelancet.com
- 21. Baud D, Gubler DJ, Schaub B, et al. An update on Zika virus infection. Lancet 2017;390:2099–109.
- Organization. **22.** World Health Zika causality 2016. Available: statement, http://www.who.int/emergencies/zikavirus/causality/en/
- 23. Liu S, Gong J, Pan Y, et al. Newborn birth weight, length, and head circumference for gestational age in Guangzhou based on the INTERGROWTH-21st standard: a multiyear hospital liveborn cohort study. 15 The Lancet 2015;386.
- **24.** Public Health Agency of Canada. Canadian perinatal health report, 2008 edition. Ottawa, 2008. Available: http://www.phac-aspc.gc.ca/publicat/2008/cphr-

<u>rspc/pdf/cphr-rspc08-eng.pdf</u> [Accessed 21 Jan 2019].

- **25.** Gong J, Chen D, Liu S. Development of maternal-neonatal health database in Guangzhou. Chin J Obstet & Gynecol 2015;31:1069–73.
- **26.** Auger N, Luu TM, Healy-Profitós J, et al. Correlation of neonatal abstinence syndrome with risk of birth defects and infant morbidity. J Stud Alcohol Drugs 2018;79:553–60.
- **27.** Liu S, Evans J, MacFarlane AJ, et al. Association of maternal risk factors with the recent rise of neural tube defects in Canada. Paediatr Perinat Epidemiol 2019;33:145–53.
- **28.** Freund RJ, Littell RC, Spector PC. SAS system for linear models. Cary NC: SAS Institute Inc, 1986.
- **29.** The Coordinating Study Group of Nine Cities on the Physical Growth and Development of Children. A national survey on physical growth and development of children under seven years of age in nine cities of China in 2015. Chin J Pediatr 2018;56:192–9.
- **30.** Heppe DHM, Steegers EAP, Timmermans S, et al. Maternal fish consumption, fetal growth and the risks of neonatal complications: the Generation R Study. Br J Nutr 2011;105:938–49.
- **31.** Dolk H. The predictive value of microcephaly during the first year of life for mental retardation at seven years. ¹⁶ Dev Med Child Neurol 1991;33:974–83.
- **32.** Leviton A, Kuban K, Allred EN, et al. Antenatal antecedents of a small head circumference at age 24-months post-term equivalent in a sample of infants born before the 28th post-menstrual week. ¹⁷ Early Hum Dev 2010;86:515–21.
- **33.** Leibovitz Z, Daniel-Spiegel E, Malinger G, et al. Prediction of microcephaly at birth using three reference ranges for fetal head circumference: can we improve prenatal diagnosis? Ultrasound Obstet Gynecol 2016;47:586–92.
- **34.** Basatemur E, Shevlin M, Sutcliffe A. Growth of children conceived by IVF and ICSI up to 12 years of age.¹⁸ Reprod Biomed Online 2010;20:144–9.
- **35.** Brandes JM, Scher A, Itzkovits J, et al. Growth and development of children conceived by in vitro fertilization. Pediatrics 1992;90:424–9.